Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for x
−27920+7912+791<x<27920+7912−791
Alternative Form
x∈(−27920+7912+791,27920+7912−791)
Evaluate
2x−5<331×4x×31−x
Multiply the terms
More Steps

Evaluate
331×4x×31−x
Multiply the terms
More Steps

Evaluate
331×4x
Multiply the terms
33×4x
Multiply the terms
132x
132x×31−x
Multiply the terms
132×3x(1−x)
Multiply the terms
396x(1−x)
2x−5<396x(1−x)
Multiply both sides of the inequality by 396
(2x−5)×396<396x(1−x)×396
Multiply the terms
More Steps

Multiply the terms
(2x−5)×396
Apply the distributive property
2x×396−5×396
Multiply the terms
792x−1980
792x−1980<396x(1−x)×396
Multiply the terms
792x−1980<x(1−x)
Move the expression to the left side
792x−1980−x(1−x)<0
Subtract the terms
More Steps

Evaluate
792x−1980−x(1−x)
Expand the expression
More Steps

Calculate
x(1−x)
Apply the distributive property
x×1−x×x
Any expression multiplied by 1 remains the same
x−x×x
Multiply the terms
x−x2
792x−1980−(x−x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
792x−1980−x+x2
Subtract the terms
More Steps

Evaluate
792x−x
Collect like terms by calculating the sum or difference of their coefficients
(792−1)x
Subtract the numbers
791x
791x−1980+x2
791x−1980+x2<0
Rewrite the expression
791x−1980+x2=0
Add or subtract both sides
791x+x2=1980
Add the same value to both sides
791x+x2+47912=1980+47912
Simplify the expression
(x+2791)2=47920+7912
Take the root of both sides of the equation and remember to use both positive and negative roots
x+2791=±47920+7912
Simplify the expression
x+2791=±27920+7912
Separate the equation into 2 possible cases
x+2791=27920+7912x+2791=−27920+7912
Solve the equation
More Steps

Evaluate
x+2791=27920+7912
Move the constant to the right-hand side and change its sign
x=27920+7912−2791
Write all numerators above the common denominator
x=27920+7912−791
x=27920+7912−791x+2791=−27920+7912
Solve the equation
More Steps

Evaluate
x+2791=−27920+7912
Move the constant to the right-hand side and change its sign
x=−27920+7912−2791
Subtract the numbers
More Steps

Evaluate
−27920+7912−2791
Write all numerators above the common denominator
2−7920+7912−791
Use b−a=−ba=−ba to rewrite the fraction
−27920+7912+791
x=−27920+7912+791
x=27920+7912−791x=−27920+7912+791
Determine the test intervals using the critical values
x<−27920+7912+791−27920+7912+791<x<27920+7912−791x>27920+7912−791
Choose a value form each interval
x1=−794x2=−396x3=3
To determine if x<−27920+7912+791 is the solution to the inequality,test if the chosen value x=−794 satisfies the initial inequality
More Steps

Evaluate
792(−794)−1980<−794(1−(−794))
Simplify
More Steps

Evaluate
792(−794)−1980
Multiply the numbers
−628848−1980
Subtract the numbers
−630828
−630828<−794(1−(−794))
Simplify
More Steps

Evaluate
−794(1−(−794))
Subtract the terms
−794×795
Multiply the numbers
−631230
−630828<−631230
Check the inequality
false
x<−27920+7912+791 is not a solutionx2=−396x3=3
To determine if −27920+7912+791<x<27920+7912−791 is the solution to the inequality,test if the chosen value x=−396 satisfies the initial inequality
More Steps

Evaluate
792(−396)−1980<−396(1−(−396))
Simplify
More Steps

Evaluate
792(−396)−1980
Multiply the numbers
−313632−1980
Subtract the numbers
−315612
−315612<−396(1−(−396))
Simplify
More Steps

Evaluate
−396(1−(−396))
Subtract the terms
−396×397
Multiply the numbers
−157212
−315612<−157212
Check the inequality
true
x<−27920+7912+791 is not a solution−27920+7912+791<x<27920+7912−791 is the solutionx3=3
To determine if x>27920+7912−791 is the solution to the inequality,test if the chosen value x=3 satisfies the initial inequality
More Steps

Evaluate
792×3−1980<3(1−3)
Simplify
More Steps

Evaluate
792×3−1980
Multiply the numbers
2376−1980
Subtract the numbers
396
396<3(1−3)
Simplify
More Steps

Evaluate
3(1−3)
Subtract the numbers
3(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−3×2
Multiply the numbers
−6
396<−6
Check the inequality
false
x<−27920+7912+791 is not a solution−27920+7912+791<x<27920+7912−791 is the solutionx>27920+7912−791 is not a solution
Solution
−27920+7912+791<x<27920+7912−791
Alternative Form
x∈(−27920+7912+791,27920+7912−791)
Show Solution
