Question
Solve the equation
Solve for x
Solve for y
x=0
Evaluate
2xy=13x
Rewrite the expression
2yx=13x
Add or subtract both sides
2yx−13x=0
Collect like terms by calculating the sum or difference of their coefficients
(2y−13)x=0
Solution
x=0
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
2xy=13x
To test if the graph of 2xy=13x is symmetry with respect to the origin,substitute -x for x and -y for y
2(−x)(−y)=13(−x)
Evaluate
2xy=13(−x)
Evaluate
2xy=−13x
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=213csc(θ)
Evaluate
2xy=13x
Move the expression to the left side
2xy−13x=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
2cos(θ)×rsin(θ)×r−13cos(θ)×r=0
Factor the expression
2cos(θ)sin(θ)×r2−13cos(θ)×r=0
Simplify the expression
sin(2θ)×r2−13cos(θ)×r=0
Factor the expression
r(rsin(2θ)−13cos(θ))=0
When the product of factors equals 0,at least one factor is 0
r=0rsin(2θ)−13cos(θ)=0
Solution
More Steps

Factor the expression
sin(2θ)×r−13cos(θ)=0
Subtract the terms
sin(2θ)×r−13cos(θ)−(−13cos(θ))=0−(−13cos(θ))
Evaluate
sin(2θ)×r=13cos(θ)
Divide the terms
r=sin(2θ)13cos(θ)
Simplify the expression
r=213csc(θ)
r=0r=213csc(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=2x13−2y
Calculate
2xy=13x
Take the derivative of both sides
dxd(2xy)=dxd(13x)
Calculate the derivative
More Steps

Evaluate
dxd(2xy)
Use differentiation rules
dxd(2x)×y+2x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
2y+2x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
2y+2xdxdy
2y+2xdxdy=dxd(13x)
Calculate the derivative
More Steps

Evaluate
dxd(13x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
13×dxd(x)
Use dxdxn=nxn−1 to find derivative
13×1
Any expression multiplied by 1 remains the same
13
2y+2xdxdy=13
Move the expression to the right-hand side and change its sign
2xdxdy=13−2y
Divide both sides
2x2xdxdy=2x13−2y
Solution
dxdy=2x13−2y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x2−13+2y
Calculate
2xy=13x
Take the derivative of both sides
dxd(2xy)=dxd(13x)
Calculate the derivative
More Steps

Evaluate
dxd(2xy)
Use differentiation rules
dxd(2x)×y+2x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
2y+2x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
2y+2xdxdy
2y+2xdxdy=dxd(13x)
Calculate the derivative
More Steps

Evaluate
dxd(13x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
13×dxd(x)
Use dxdxn=nxn−1 to find derivative
13×1
Any expression multiplied by 1 remains the same
13
2y+2xdxdy=13
Move the expression to the right-hand side and change its sign
2xdxdy=13−2y
Divide both sides
2x2xdxdy=2x13−2y
Divide the numbers
dxdy=2x13−2y
Take the derivative of both sides
dxd(dxdy)=dxd(2x13−2y)
Calculate the derivative
dx2d2y=dxd(2x13−2y)
Use differentiation rules
dx2d2y=(2x)2dxd(13−2y)×2x−(13−2y)×dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(13−2y)
Use differentiation rules
dxd(13)+dxd(−2y)
Use dxd(c)=0 to find derivative
0+dxd(−2y)
Evaluate the derivative
0−2dxdy
Evaluate
−2dxdy
dx2d2y=(2x)2−2dxdy×2x−(13−2y)×dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(2x)
Simplify
2×dxd(x)
Rewrite the expression
2×1
Any expression multiplied by 1 remains the same
2
dx2d2y=(2x)2−2dxdy×2x−(13−2y)×2
Calculate
dx2d2y=(2x)2−4dxdy×x−(13−2y)×2
Calculate
More Steps

Evaluate
(13−2y)×2
Apply the distributive property
13×2−2y×2
Multiply the numbers
26−2y×2
Multiply the numbers
26−4y
dx2d2y=(2x)2−4dxdy×x−(26−4y)
Calculate
More Steps

Calculate
−4dxdy×x−(26−4y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4dxdy×x−26+4y
Use the commutative property to reorder the terms
−4xdxdy−26+4y
dx2d2y=(2x)2−4xdxdy−26+4y
Calculate
More Steps

Evaluate
(2x)2
Evaluate the power
22x2
Evaluate the power
4x2
dx2d2y=4x2−4xdxdy−26+4y
Calculate
dx2d2y=2x2−2xdxdy−13+2y
Use equation dxdy=2x13−2y to substitute
dx2d2y=2x2−2x×2x13−2y−13+2y
Solution
More Steps

Calculate
2x2−2x×2x13−2y−13+2y
Multiply the terms
More Steps

Multiply the terms
−2x×2x13−2y
Multiply the terms
−(13−2y)
Multiply the terms
−13+2y
2x2−13+2y−13+2y
Calculate the sum or difference
More Steps

Evaluate
−13+2y−13+2y
Subtract the numbers
−26+2y+2y
Add the terms
−26+4y
2x2−26+4y
Factor
2x22(−13+2y)
Reduce the fraction
x2−13+2y
dx2d2y=x2−13+2y
Show Solution
