Question
Solve the equation
x=10
Evaluate
(2×3x)+1=(7×15x)+3
Multiply the terms
32x+1=(7×15x)+3
Multiply the terms
32x+1=157x+3
Multiply both sides of the equation by LCD
(32x+1)×15=(157x+3)×15
Simplify the equation
More Steps

Evaluate
(32x+1)×15
Apply the distributive property
32x×15+1×15
Simplify
2x×5+1×15
Multiply the numbers
10x+1×15
Any expression multiplied by 1 remains the same
10x+15
10x+15=(157x+3)×15
Simplify the equation
More Steps

Evaluate
(157x+3)×15
Apply the distributive property
157x×15+3×15
Simplify
7x+3×15
Multiply the numbers
7x+45
10x+15=7x+45
Move the expression to the left side
10x+15−7x=45
Move the expression to the right side
10x−7x=45−15
Add and subtract
More Steps

Evaluate
10x−7x
Collect like terms by calculating the sum or difference of their coefficients
(10−7)x
Subtract the numbers
3x
3x=45−15
Add and subtract
3x=30
Divide both sides
33x=330
Divide the numbers
x=330
Solution
More Steps

Evaluate
330
Reduce the numbers
110
Calculate
10
x=10
Show Solution

Rewrite the equation
x=10
Evaluate
(2×3x)+1=(7×15x)+3
Evaluate
32x+1=(7×15x)+3
Evaluate
32x+1=157x+3
Rewrite the expression
32x+1=157x+3
Rewrite the expression
32x+1=157x+3
Multiply both sides of the equation by LCD
10x+15=7x+45
Move the variable to the left side
3x+15=45
Move the constant to the right side
3x=30
Solution
x=10
Show Solution
