Question
Solve the system of equations
Solve using the substitution method
Solve using the elimination method
(x1,y1)=(0,0)(x2,y2)=(121,121)
Evaluate
{2x=3y×8x3y×8x=2y
Calculate
{2x=24yx3y×8x=2y
Calculate
{2x=24yx24yx=2y
Solve the equation
More Steps

Evaluate
2x=24yx
Move the expression to the left side
2x−24yx=0
Factor the expression
2x(1−12y)=0
Divide both sides
x(1−12y)=0
Separate the equation into 2 possible cases
x=0∪1−12y=0
Solve the equation
More Steps

Evaluate
1−12y=0
Move the constant to the right-hand side and change its sign
−12y=0−1
Removing 0 doesn't change the value,so remove it from the expression
−12y=−1
Change the signs on both sides of the equation
12y=1
Divide both sides
1212y=121
Divide the numbers
y=121
x=0∪y=121
{x=0∪y=12124yx=2y
Evaluate
{x=024yx=2y∪{y=12124yx=2y
Calculate
More Steps

Evaluate
{x=024yx=2y
Substitute the given value of x into the equation 24yx=2y
24y×0=2y
Any expression multiplied by 0 equals 0
0=2y
Swap the sides of the equation
2y=0
Rewrite the expression
y=0
Calculate
{x=0y=0
{x=0y=0∪{y=12124yx=2y
Calculate
More Steps

Evaluate
{y=12124yx=2y
Substitute the given value of y into the equation 24yx=2y
24×121x=2×121
Simplify
2x=2×121
Simplify
More Steps

Evaluate
2×121
Reduce the numbers
1×61
Multiply the numbers
61
2x=61
Multiply by the reciprocal
2x×21=61×21
Multiply
x=61×21
Multiply
More Steps

Evaluate
61×21
To multiply the fractions,multiply the numerators and denominators separately
6×21
Multiply the numbers
121
x=121
Calculate
{x=121y=121
{x=0y=0∪{x=121y=121
Check the solution
More Steps

Check the solution
{2×0=3×0×8×03×0×8×0=2×0
Simplify
{0=00=0
Evaluate
true
{x=0y=0∪{x=121y=121
Check the solution
More Steps

Check the solution
{2×121=3×121×8×1213×121×8×121=2×121
Simplify
{0.16˙=0.16˙0.16˙=0.16˙
Evaluate
true
{x=0y=0∪{x=121y=121
Solution
(x1,y1)=(0,0)(x2,y2)=(121,121)
Show Solution
