Question
Simplify the expression
9x−186x33x−36x23x+72x3x−483x−5x4
Evaluate
2x31×3(x−2)2−(5×3x4)×3(x−2)−1
Remove the parentheses
2x31×3(x−2)2−5×3x4×3(x−2)−1
Divide the terms
More Steps

Evaluate
3(x−2)−1
Express with a positive exponent using a−n=an1
3x−21
Multiply by the reciprocal
x−21×31
Multiply the terms
(x−2)×31
Multiply the terms
3(x−2)1
2x31×3(x−2)2−5×3x4×3(x−2)1
Multiply the terms
32x31(x−2)2−5×3x4×3(x−2)1
Multiply the terms
More Steps

Multiply the terms
5×3x4×3(x−2)1
Multiply the terms
35x4×3(x−2)1
Multiply the terms
3×3(x−2)5x4
Multiply the terms
9(x−2)5x4
32x31(x−2)2−9(x−2)5x4
Reduce fractions to a common denominator
3×3(x−2)2x31(x−2)2×3(x−2)−9(x−2)5x4
Multiply the numbers
9(x−2)2x31(x−2)2×3(x−2)−9(x−2)5x4
Write all numerators above the common denominator
9(x−2)2x31(x−2)2×3(x−2)−5x4
Multiply the terms
More Steps

Evaluate
2x31(x−2)2×3(x−2)
Multiply the terms
6x31(x−2)2(x−2)
Multiply the terms
More Steps

Evaluate
6(x−2)
Apply the distributive property
6x−6×2
Multiply the numbers
6x−12
(6x−12)x31(x−2)2
Multiply the terms
More Steps

Evaluate
(6x−12)x31
Apply the distributive property
6x×x31−12x31
Multiply the terms
6x34−12x31
(6x34−12x31)(x−2)2
9(x−2)(6x34−12x31)(x−2)2−5x4
Expand the expression
More Steps

Evaluate
(6x34−12x31)(x−2)2
Expand the expression
More Steps

Evaluate
(x−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×2+22
Calculate
x2−4x+4
(6x34−12x31)(x2−4x+4)
Apply the distributive property
6x34×x2−6x34×4x+6x34×4−12x31×x2−(−12x31×4x)−12x31×4
Multiply the terms
More Steps

Evaluate
x34×x2
Use the product rule an×am=an+m to simplify the expression
x34+2
Add the numbers
x310
6x310−6x34×4x+6x34×4−12x31×x2−(−12x31×4x)−12x31×4
Multiply the terms
More Steps

Evaluate
6x34×4x
Multiply the numbers
24x34×x
Multiply the terms
24x37
6x310−24x37+6x34×4−12x31×x2−(−12x31×4x)−12x31×4
Multiply the numbers
6x310−24x37+24x34−12x31×x2−(−12x31×4x)−12x31×4
Multiply the terms
More Steps

Evaluate
x31×x2
Use the product rule an×am=an+m to simplify the expression
x31+2
Add the numbers
x37
6x310−24x37+24x34−12x37−(−12x31×4x)−12x31×4
Multiply the terms
More Steps

Evaluate
−12x31×4x
Multiply the numbers
−48x31×x
Multiply the terms
−48x34
6x310−24x37+24x34−12x37−(−48x34)−12x31×4
Multiply the numbers
6x310−24x37+24x34−12x37−(−48x34)−48x31
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x310−24x37+24x34−12x37+48x34−48x31
Subtract the terms
More Steps

Evaluate
−24x37−12x37
Collect like terms by calculating the sum or difference of their coefficients
(−24−12)x37
Subtract the numbers
−36x37
6x310−36x37+24x34+48x34−48x31
Add the terms
More Steps

Evaluate
24x34+48x34
Collect like terms by calculating the sum or difference of their coefficients
(24+48)x34
Add the numbers
72x34
6x310−36x37+72x34−48x31
9(x−2)6x310−36x37+72x34−48x31−5x4
Transform the expression
9(x−2)6x33x−36x23x+72x3x−483x−5x4
Solution
More Steps

Evaluate
9(x−2)
Apply the distributive property
9x−9×2
Multiply the numbers
9x−18
9x−186x33x−36x23x+72x3x−483x−5x4
Show Solution
