Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=4315−311585,x2=4315+311585
Alternative Form
x1≈−1.975228,x2≈159.475228
Evaluate
2x2−315x−630=0
Substitute a=2,b=−315 and c=−630 into the quadratic formula x=2a−b±b2−4ac
x=2×2315±(−315)2−4×2(−630)
Simplify the expression
x=4315±(−315)2−4×2(−630)
Simplify the expression
More Steps

Evaluate
(−315)2−4×2(−630)
Multiply
More Steps

Multiply the terms
4×2(−630)
Rewrite the expression
−4×2×630
Multiply the terms
−5040
(−315)2−(−5040)
Rewrite the expression
3152−(−5040)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3152+5040
x=4315±3152+5040
Simplify the radical expression
More Steps

Evaluate
3152+5040
Add the numbers
104265
Write the expression as a product where the root of one of the factors can be evaluated
9×11585
Write the number in exponential form with the base of 3
32×11585
The root of a product is equal to the product of the roots of each factor
32×11585
Reduce the index of the radical and exponent with 2
311585
x=4315±311585
Separate the equation into 2 possible cases
x=4315+311585x=4315−311585
Solution
x1=4315−311585,x2=4315+311585
Alternative Form
x1≈−1.975228,x2≈159.475228
Show Solution
