Question
Factor the expression
(x−2)(2x2+4x+3)
Evaluate
2x3−5x−6
Calculate
2x3+4x2+3x−4x2−8x−6
Rewrite the expression
x×2x2+x×4x+x×3−2×2x2−2×4x−2×3
Factor out x from the expression
x(2x2+4x+3)−2×2x2−2×4x−2×3
Factor out −2 from the expression
x(2x2+4x+3)−2(2x2+4x+3)
Solution
(x−2)(2x2+4x+3)
Show Solution

Find the roots
x1=−1−22i,x2=−1+22i,x3=2
Alternative Form
x1≈−1−0.707107i,x2≈−1+0.707107i,x3=2
Evaluate
2x3−5x−6
To find the roots of the expression,set the expression equal to 0
2x3−5x−6=0
Factor the expression
(x−2)(2x2+4x+3)=0
Separate the equation into 2 possible cases
x−2=02x2+4x+3=0
Solve the equation
More Steps

Evaluate
x−2=0
Move the constant to the right-hand side and change its sign
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
x=22x2+4x+3=0
Solve the equation
More Steps

Evaluate
2x2+4x+3=0
Substitute a=2,b=4 and c=3 into the quadratic formula x=2a−b±b2−4ac
x=2×2−4±42−4×2×3
Simplify the expression
x=4−4±42−4×2×3
Simplify the expression
More Steps

Evaluate
42−4×2×3
Multiply the terms
42−24
Evaluate the power
16−24
Subtract the numbers
−8
x=4−4±−8
Simplify the radical expression
More Steps

Evaluate
−8
Evaluate the power
8×−1
Evaluate the power
8×i
Evaluate the power
22×i
x=4−4±22×i
Separate the equation into 2 possible cases
x=4−4+22×ix=4−4−22×i
Simplify the expression
x=−1+22ix=4−4−22×i
Simplify the expression
x=−1+22ix=−1−22i
x=2x=−1+22ix=−1−22i
Solution
x1=−1−22i,x2=−1+22i,x3=2
Alternative Form
x1≈−1−0.707107i,x2≈−1+0.707107i,x3=2
Show Solution
