Question
Solve the inequality
x>−1.528759
Alternative Form
x∈(−1.528759,+∞)
Evaluate
2x2×2x×1−(15(x−1))÷2>2x(x×1)
Remove the parentheses
2x2×2x×1−(15(x−1))÷2>2x×x×1
Simplify
More Steps

Evaluate
2x2×2x×1−(15(x−1))÷2
Multiply the terms
2x2×2x×1−15(x−1)÷2
Multiply the terms
More Steps

Multiply the terms
2x2×2x×1
Rewrite the expression
2x2×2x
Multiply the terms
4x2×x
Multiply the terms with the same base by adding their exponents
4x2+1
Add the numbers
4x3
4x3−15(x−1)÷2
Rewrite the expression
4x3−215(x−1)
4x3−215(x−1)>2x×x×1
Multiply the terms
More Steps

Evaluate
2x×x×1
Rewrite the expression
2x×x
Multiply the terms
2x2
4x3−215(x−1)>2x2
Multiply both sides of the inequality by 2
(4x3−215(x−1))×2>2x2×2
Multiply the terms
More Steps

Multiply the terms
(4x3−215(x−1))×2
Apply the distributive property
4x3×2−215(x−1)×2
Reduce the fraction
4x3×2−15(x−1)
Multiply the terms
8x3−15(x−1)
8x3−15(x−1)>2x2×2
Multiply the terms
8x3−15(x−1)>4x2
Move the expression to the left side
8x3−15(x−1)−4x2>0
Expand the expression
More Steps

Evaluate
−15(x−1)
Apply the distributive property
−15x−(−15×1)
Any expression multiplied by 1 remains the same
−15x−(−15)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−15x+15
8x3−15x+15−4x2>0
Rewrite the expression
8x3−15x+15−4x2=0
Find the critical values by solving the corresponding equation
x≈−1.528759
Determine the test intervals using the critical values
x<−1.528759x>−1.528759
Choose a value form each interval
x1=−3x2=−1
To determine if x<−1.528759 is the solution to the inequality,test if the chosen value x=−3 satisfies the initial inequality
More Steps

Evaluate
8(−3)3−15(−3−1)>4(−3)2
Simplify
More Steps

Evaluate
8(−3)3−15(−3−1)
Subtract the numbers
8(−3)3−15(−4)
Multiply the terms
−216−15(−4)
Multiply the numbers
−216+60
Add the numbers
−156
−156>4(−3)2
Multiply the terms
More Steps

Evaluate
4(−3)2
Evaluate the power
4×9
Multiply the numbers
36
−156>36
Check the inequality
false
x<−1.528759 is not a solutionx2=−1
To determine if x>−1.528759 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
8(−1)3−15(−1−1)>4(−1)2
Simplify
More Steps

Evaluate
8(−1)3−15(−1−1)
Subtract the numbers
8(−1)3−15(−2)
Multiply the terms
−8−15(−2)
Multiply the numbers
−8+30
Add the numbers
22
22>4(−1)2
Simplify
More Steps

Evaluate
4(−1)2
Evaluate the power
4×1
Any expression multiplied by 1 remains the same
4
22>4
Check the inequality
true
x<−1.528759 is not a solutionx>−1.528759 is the solution
Solution
x>−1.528759
Alternative Form
x∈(−1.528759,+∞)
Show Solution
