Question
Solve the equation
x=0x=2y1−2y6
Evaluate
2x2y=x−2xy6
Rewrite the expression
2yx2=x−2y6x
Collect like terms by calculating the sum or difference of their coefficients
2yx2=(1−2y6)x
Add or subtract both sides
2yx2−(1−2y6)x=0
Calculate
2yx2+(−1+2y6)x=0
Expand the expression
2yx2−x+2y6x=0
Factor the expression
More Steps

Evaluate
2yx2−x+2y6x
Rewrite the expression
x×2yx−x+x×2y6
Factor out x from the expression
x(2yx−1+2y6)
x(2yx−1+2y6)=0
When the product of factors equals 0,at least one factor is 0
x=02yx−1+2y6=0
Solution
More Steps

Evaluate
2yx−1+2y6=0
Move the expression to the right-hand side and change its sign
2yx=0−(−1+2y6)
Subtract the terms
More Steps

Evaluate
0−(−1+2y6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0+1−2y6
Removing 0 doesn't change the value,so remove it from the expression
1−2y6
2yx=1−2y6
Divide both sides
2y2yx=2y1−2y6
Divide the numbers
x=2y1−2y6
x=0x=2y1−2y6
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
2x2y=x−2xy6
To test if the graph of 2x2y=x−2xy6 is symmetry with respect to the origin,substitute -x for x and -y for y
2(−x)2(−y)=−x−2(−x)(−y)6
Evaluate
More Steps

Evaluate
2(−x)2(−y)
Any expression multiplied by 1 remains the same
−2(−x)2y
Multiply the terms
−2x2y
−2x2y=−x−2(−x)(−y)6
Evaluate
More Steps

Evaluate
−x−2(−x)(−y)6
Multiply
More Steps

Multiply the terms
2(−x)(−y)6
Any expression multiplied by 1 remains the same
−2x(−y)6
Multiply the terms
−2xy6
−x−(−2xy6)
Rewrite the expression
−x+2xy6
−2x2y=−x+2xy6
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=2x2+12xy51−2y6−4xy
Calculate
2x2y=x−2xy6
Take the derivative of both sides
dxd(2x2y)=dxd(x−2xy6)
Calculate the derivative
More Steps

Evaluate
dxd(2x2y)
Use differentiation rules
dxd(2x2)×y+2x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x2)
Use dxdxn=nxn−1 to find derivative
2×2x
Multiply the terms
4x
4xy+2x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
4xy+2x2dxdy
4xy+2x2dxdy=dxd(x−2xy6)
Calculate the derivative
More Steps

Evaluate
dxd(x−2xy6)
Use differentiation rules
dxd(x)+dxd(−2xy6)
Use dxdxn=nxn−1 to find derivative
1+dxd(−2xy6)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy6)
Use differentiation rules
dxd(−2x)×y6−2x×dxd(y6)
Evaluate the derivative
−2y6−2x×dxd(y6)
Evaluate the derivative
−2y6−12xy5dxdy
1−2y6−12xy5dxdy
4xy+2x2dxdy=1−2y6−12xy5dxdy
Move the expression to the left side
4xy+2x2dxdy+12xy5dxdy=1−2y6
Move the expression to the right side
2x2dxdy+12xy5dxdy=1−2y6−4xy
Collect like terms by calculating the sum or difference of their coefficients
(2x2+12xy5)dxdy=1−2y6−4xy
Divide both sides
2x2+12xy5(2x2+12xy5)dxdy=2x2+12xy51−2y6−4xy
Solution
dxdy=2x2+12xy51−2y6−4xy
Show Solution

Find the second derivative
dx2d2y=36y5x4+216y10x3+432y15x2+2x584y5x−24y11x−136x2y6−12y10+84y16+12x3y−4x2−15y4
Calculate
2x2y=x−2xy6
Take the derivative of both sides
dxd(2x2y)=dxd(x−2xy6)
Calculate the derivative
More Steps

Evaluate
dxd(2x2y)
Use differentiation rules
dxd(2x2)×y+2x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x2)
Use dxdxn=nxn−1 to find derivative
2×2x
Multiply the terms
4x
4xy+2x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
4xy+2x2dxdy
4xy+2x2dxdy=dxd(x−2xy6)
Calculate the derivative
More Steps

Evaluate
dxd(x−2xy6)
Use differentiation rules
dxd(x)+dxd(−2xy6)
Use dxdxn=nxn−1 to find derivative
1+dxd(−2xy6)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy6)
Use differentiation rules
dxd(−2x)×y6−2x×dxd(y6)
Evaluate the derivative
−2y6−2x×dxd(y6)
Evaluate the derivative
−2y6−12xy5dxdy
1−2y6−12xy5dxdy
4xy+2x2dxdy=1−2y6−12xy5dxdy
Move the expression to the left side
4xy+2x2dxdy+12xy5dxdy=1−2y6
Move the expression to the right side
2x2dxdy+12xy5dxdy=1−2y6−4xy
Collect like terms by calculating the sum or difference of their coefficients
(2x2+12xy5)dxdy=1−2y6−4xy
Divide both sides
2x2+12xy5(2x2+12xy5)dxdy=2x2+12xy51−2y6−4xy
Divide the numbers
dxdy=2x2+12xy51−2y6−4xy
Take the derivative of both sides
dxd(dxdy)=dxd(2x2+12xy51−2y6−4xy)
Calculate the derivative
dx2d2y=dxd(2x2+12xy51−2y6−4xy)
Use differentiation rules
dx2d2y=(2x2+12xy5)2dxd(1−2y6−4xy)×(2x2+12xy5)−(1−2y6−4xy)×dxd(2x2+12xy5)
Calculate the derivative
More Steps

Evaluate
dxd(1−2y6−4xy)
Use differentiation rules
dxd(1)+dxd(−2y6)+dxd(−4xy)
Use dxd(c)=0 to find derivative
0+dxd(−2y6)+dxd(−4xy)
Evaluate the derivative
0−12y5dxdy+dxd(−4xy)
Evaluate the derivative
0−12y5dxdy−4y−4xdxdy
Evaluate
−12y5dxdy−4y−4xdxdy
dx2d2y=(2x2+12xy5)2(−12y5dxdy−4y−4xdxdy)(2x2+12xy5)−(1−2y6−4xy)×dxd(2x2+12xy5)
Calculate the derivative
More Steps

Evaluate
dxd(2x2+12xy5)
Use differentiation rules
dxd(2x2)+dxd(12xy5)
Evaluate the derivative
4x+dxd(12xy5)
Evaluate the derivative
4x+12y5+60xy4dxdy
dx2d2y=(2x2+12xy5)2(−12y5dxdy−4y−4xdxdy)(2x2+12xy5)−(1−2y6−4xy)(4x+12y5+60xy4dxdy)
Calculate
More Steps

Evaluate
(−12y5dxdy−4y−4xdxdy)(2x2+12xy5)
Use the the distributive property to expand the expression
−12y5dxdy×(2x2+12xy5)+(−4y−4xdxdy)(2x2+12xy5)
Multiply the terms
−24y5x2dxdy−144y10xdxdy+(−4y−4xdxdy)(2x2+12xy5)
Multiply the terms
−24y5x2dxdy−144y10xdxdy−8yx2−48y6x−8x3dxdy−48x2y5dxdy
Calculate
−72y5x2dxdy−144y10xdxdy−8yx2−48y6x−8x3dxdy
dx2d2y=(2x2+12xy5)2−72y5x2dxdy−144y10xdxdy−8yx2−48y6x−8x3dxdy−(1−2y6−4xy)(4x+12y5+60xy4dxdy)
Calculate
More Steps

Evaluate
(1−2y6−4xy)(4x+12y5+60xy4dxdy)
Use the the distributive property to expand the expression
(1−2y6−4xy)×4x+(1−2y6−4xy)(12y5+60xy4dxdy)
Multiply the terms
4x−8y6x−16x2y+(1−2y6−4xy)(12y5+60xy4dxdy)
Multiply the terms
4x−8y6x−16x2y+12y5+60xy4dxdy−24y11−120y10xdxdy−48xy6−240x2y5dxdy
Calculate
4x−56y6x−16x2y+12y5+60xy4dxdy−24y11−120y10xdxdy−240x2y5dxdy
dx2d2y=(2x2+12xy5)2−72y5x2dxdy−144y10xdxdy−8yx2−48y6x−8x3dxdy−(4x−56y6x−16x2y+12y5+60xy4dxdy−24y11−120y10xdxdy−240x2y5dxdy)
Calculate
More Steps

Calculate
−72y5x2dxdy−144y10xdxdy−8yx2−48y6x−8x3dxdy−(4x−56y6x−16x2y+12y5+60xy4dxdy−24y11−120y10xdxdy−240x2y5dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−72y5x2dxdy−144y10xdxdy−8yx2−48y6x−8x3dxdy−4x+56y6x+16x2y−12y5−60xy4dxdy+24y11+120y10xdxdy+240x2y5dxdy
Add the terms
168y5x2dxdy−144y10xdxdy−8yx2−48y6x−8x3dxdy−4x+56y6x+16x2y−12y5−60xy4dxdy+24y11+120y10xdxdy
Add the terms
168y5x2dxdy−24y10xdxdy−8yx2−48y6x−8x3dxdy−4x+56y6x+16x2y−12y5−60xy4dxdy+24y11
Add the terms
168y5x2dxdy−24y10xdxdy+8yx2−48y6x−8x3dxdy−4x+56y6x−12y5−60xy4dxdy+24y11
Add the terms
168y5x2dxdy−24y10xdxdy+8yx2+8y6x−8x3dxdy−4x−12y5−60xy4dxdy+24y11
dx2d2y=(2x2+12xy5)2168y5x2dxdy−24y10xdxdy+8yx2+8y6x−8x3dxdy−4x−12y5−60xy4dxdy+24y11
Calculate
dx2d2y=(x2+6xy5)242y5x2dxdy−6y10xdxdy+2yx2+2y6x−2x3dxdy−x−3y5−15xy4dxdy+6y11
Use equation dxdy=2x2+12xy51−2y6−4xy to substitute
dx2d2y=(x2+6xy5)242y5x2×2x2+12xy51−2y6−4xy−6y10x×2x2+12xy51−2y6−4xy+2yx2+2y6x−2x3×2x2+12xy51−2y6−4xy−x−3y5−15xy4×2x2+12xy51−2y6−4xy+6y11
Solution
More Steps

Calculate
(x2+6xy5)242y5x2×2x2+12xy51−2y6−4xy−6y10x×2x2+12xy51−2y6−4xy+2yx2+2y6x−2x3×2x2+12xy51−2y6−4xy−x−3y5−15xy4×2x2+12xy51−2y6−4xy+6y11
Multiply the terms
More Steps

Multiply the terms
42y5x2×2x2+12xy51−2y6−4xy
Rewrite the expression
42y5x2×2(x2+6xy5)1−2y6−4xy
Cancel out the common factor 2
21y5x2×x2+6xy51−2y6−4xy
Rewrite the expression
21y5x2×x(x+6y5)1−2y6−4xy
Cancel out the common factor x
21y5x×x+6y51−2y6−4xy
Multiply the terms
x+6y521y5x(1−2y6−4xy)
(x2+6xy5)2x+6y521y5x(1−2y6−4xy)−6y10x×2x2+12xy51−2y6−4xy+2yx2+2y6x−2x3×2x2+12xy51−2y6−4xy−x−3y5−15xy4×2x2+12xy51−2y6−4xy+6y11
Multiply the terms
(x2+6xy5)2x+6y521y5x(1−2y6−4xy)−x+6y53y10(1−2y6−4xy)+2yx2+2y6x−2x3×2x2+12xy51−2y6−4xy−x−3y5−15xy4×2x2+12xy51−2y6−4xy+6y11
Multiply the terms
(x2+6xy5)2x+6y521y5x(1−2y6−4xy)−x+6y53y10(1−2y6−4xy)+2yx2+2y6x−x+6y5x2(1−2y6−4xy)−x−3y5−15xy4×2x2+12xy51−2y6−4xy+6y11
Multiply the terms
(x2+6xy5)2x+6y521y5x(1−2y6−4xy)−x+6y53y10(1−2y6−4xy)+2yx2+2y6x−x+6y5x2(1−2y6−4xy)−x−3y5−2x+12y515y4(1−2y6−4xy)+6y11
Calculate the sum or difference
More Steps

Evaluate
x+6y521y5x(1−2y6−4xy)−x+6y53y10(1−2y6−4xy)+2yx2+2y6x−x+6y5x2(1−2y6−4xy)−x−3y5−2x+12y515y4(1−2y6−4xy)+6y11
Factor the expression
x+6y521y5x(1−2y6−4xy)−x+6y53y10(1−2y6−4xy)+2yx2+2y6x−x+6y5x2(1−2y6−4xy)−x−3y5−2(6y5+x)15y4(1−2y6−4xy)+6y11
Reduce fractions to a common denominator
(x+6y5)×221y5x(1−2y6−4xy)×2−(x+6y5)×23y10(1−2y6−4xy)×2+2(x+6y5)2yx2×2(x+6y5)+2(x+6y5)2y6x×2(x+6y5)−(x+6y5)×2x2(1−2y6−4xy)×2−2(x+6y5)x×2(x+6y5)−2(x+6y5)3y5×2(x+6y5)−2(6y5+x)15y4(1−2y6−4xy)+2(6y5+x)6y11×2(6y5+x)
Use the commutative property to reorder the terms
2(x+6y5)21y5x(1−2y6−4xy)×2−(x+6y5)×23y10(1−2y6−4xy)×2+2(x+6y5)2yx2×2(x+6y5)+2(x+6y5)2y6x×2(x+6y5)−(x+6y5)×2x2(1−2y6−4xy)×2−2(x+6y5)x×2(x+6y5)−2(x+6y5)3y5×2(x+6y5)−2(6y5+x)15y4(1−2y6−4xy)+2(6y5+x)6y11×2(6y5+x)
Use the commutative property to reorder the terms
2(x+6y5)21y5x(1−2y6−4xy)×2−2(x+6y5)3y10(1−2y6−4xy)×2+2(x+6y5)2yx2×2(x+6y5)+2(x+6y5)2y6x×2(x+6y5)−(x+6y5)×2x2(1−2y6−4xy)×2−2(x+6y5)x×2(x+6y5)−2(x+6y5)3y5×2(x+6y5)−2(6y5+x)15y4(1−2y6−4xy)+2(6y5+x)6y11×2(6y5+x)
Use the commutative property to reorder the terms
2(x+6y5)21y5x(1−2y6−4xy)×2−2(x+6y5)3y10(1−2y6−4xy)×2+2(x+6y5)2yx2×2(x+6y5)+2(x+6y5)2y6x×2(x+6y5)−2(x+6y5)x2(1−2y6−4xy)×2−2(x+6y5)x×2(x+6y5)−2(x+6y5)3y5×2(x+6y5)−2(6y5+x)15y4(1−2y6−4xy)+2(6y5+x)6y11×2(6y5+x)
Rewrite the expression
2(6y5+x)21y5x(1−2y6−4xy)×2−2(6y5+x)3y10(1−2y6−4xy)×2+2(6y5+x)2yx2×2(x+6y5)+2(6y5+x)2y6x×2(x+6y5)−2(6y5+x)x2(1−2y6−4xy)×2−2(6y5+x)x×2(x+6y5)−2(6y5+x)3y5×2(x+6y5)−2(6y5+x)15y4(1−2y6−4xy)+2(6y5+x)6y11×2(6y5+x)
Write all numerators above the common denominator
2(6y5+x)21y5x(1−2y6−4xy)×2−3y10(1−2y6−4xy)×2+2yx2×2(x+6y5)+2y6x×2(x+6y5)−x2(1−2y6−4xy)×2−x×2(x+6y5)−3y5×2(x+6y5)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−3y10(1−2y6−4xy)×2+2yx2×2(x+6y5)+2y6x×2(x+6y5)−x2(1−2y6−4xy)×2−x×2(x+6y5)−3y5×2(x+6y5)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+2yx2×2(x+6y5)+2y6x×2(x+6y5)−x2(1−2y6−4xy)×2−x×2(x+6y5)−3y5×2(x+6y5)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+4x3y+24y6x2+2y6x×2(x+6y5)−x2(1−2y6−4xy)×2−x×2(x+6y5)−3y5×2(x+6y5)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+4x3y+24y6x2+4x2y6+24y11x−x2(1−2y6−4xy)×2−x×2(x+6y5)−3y5×2(x+6y5)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+4x3y+24y6x2+4x2y6+24y11x−(2x2−4x2y6−8x3y)−x×2(x+6y5)−3y5×2(x+6y5)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+4x3y+24y6x2+4x2y6+24y11x−(2x2−4x2y6−8x3y)−(2x2+12xy5)−3y5×2(x+6y5)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+4x3y+24y6x2+4x2y6+24y11x−(2x2−4x2y6−8x3y)−(2x2+12xy5)−(6xy5+36y10)−15y4(1−2y6−4xy)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+4x3y+24y6x2+4x2y6+24y11x−(2x2−4x2y6−8x3y)−(2x2+12xy5)−(6xy5+36y10)−(15y4−30y10−60xy5)+6y11×2(6y5+x)
Multiply the terms
2(6y5+x)42y5x−84y11x−168x2y6−(6y10−12y16−24xy11)+4x3y+24y6x2+4x2y6+24y11x−(2x2−4x2y6−8x3y)−(2x2+12xy5)−(6xy5+36y10)−(15y4−30y10−60xy5)+72y16+12xy11
Calculate the sum or difference
2(6y5+x)84y5x−24y11x−136x2y6−12y10+84y16+12x3y−4x2−15y4
(x2+6xy5)22(6y5+x)84y5x−24y11x−136x2y6−12y10+84y16+12x3y−4x2−15y4
Multiply by the reciprocal
2(6y5+x)84y5x−24y11x−136x2y6−12y10+84y16+12x3y−4x2−15y4×(x2+6xy5)21
Multiply the terms
2(6y5+x)(x2+6xy5)284y5x−24y11x−136x2y6−12y10+84y16+12x3y−4x2−15y4
Expand the expression
More Steps

Evaluate
2(6y5+x)(x2+6xy5)2
Expand the expression
2(6y5+x)(x4+12x3y5+36x2y10)
Multiply the terms
(12y5+2x)(x4+12x3y5+36x2y10)
Apply the distributive property
12y5x4+12y5×12x3y5+12y5×36x2y10+2x×x4+2x×12x3y5+2x×36x2y10
Multiply the terms
12y5x4+144y10x3+12y5×36x2y10+2x×x4+2x×12x3y5+2x×36x2y10
Multiply the terms
12y5x4+144y10x3+432y15x2+2x×x4+2x×12x3y5+2x×36x2y10
Multiply the terms
12y5x4+144y10x3+432y15x2+2x5+2x×12x3y5+2x×36x2y10
Multiply the terms
12y5x4+144y10x3+432y15x2+2x5+24x4y5+2x×36x2y10
Multiply the terms
12y5x4+144y10x3+432y15x2+2x5+24x4y5+72x3y10
Add the terms
36y5x4+144y10x3+432y15x2+2x5+72x3y10
Add the terms
36y5x4+216y10x3+432y15x2+2x5
36y5x4+216y10x3+432y15x2+2x584y5x−24y11x−136x2y6−12y10+84y16+12x3y−4x2−15y4
dx2d2y=36y5x4+216y10x3+432y15x2+2x584y5x−24y11x−136x2y6−12y10+84y16+12x3y−4x2−15y4
Show Solution
