Question
Solve the equation
Solve for x
Solve for y
x=2y3+y6+2x=2y3−y6+2
Evaluate
2x2−2xy×y2−1=0
Multiply
More Steps

Evaluate
−2xy×y2
Multiply the terms with the same base by adding their exponents
−2xy1+2
Add the numbers
−2xy3
2x2−2xy3−1=0
Rewrite the expression
2x2−2y3x−1=0
Substitute a=2,b=−2y3 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2×22y3±(−2y3)2−4×2(−1)
Simplify the expression
x=42y3±(−2y3)2−4×2(−1)
Simplify the expression
More Steps

Evaluate
(−2y3)2−4×2(−1)
Multiply
More Steps

Multiply the terms
4×2(−1)
Any expression multiplied by 1 remains the same
−4×2
Multiply the terms
−8
(−2y3)2−(−8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−2y3)2+8
Evaluate the power
4y6+8
x=42y3±4y6+8
Simplify the radical expression
More Steps

Evaluate
4y6+8
Factor the expression
4(y6+2)
The root of a product is equal to the product of the roots of each factor
4×y6+2
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
2y6+2
x=42y3±2y6+2
Separate the equation into 2 possible cases
x=42y3+2y6+2x=42y3−2y6+2
Simplify the expression
More Steps

Evaluate
x=42y3+2y6+2
Divide the terms
More Steps

Evaluate
42y3+2y6+2
Rewrite the expression
42(y3+y6+2)
Cancel out the common factor 2
2y3+y6+2
x=2y3+y6+2
x=2y3+y6+2x=42y3−2y6+2
Solution
More Steps

Evaluate
x=42y3−2y6+2
Divide the terms
More Steps

Evaluate
42y3−2y6+2
Rewrite the expression
42(y3−y6+2)
Cancel out the common factor 2
2y3−y6+2
x=2y3−y6+2
x=2y3+y6+2x=2y3−y6+2
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
2x2−2xy×y2−1=0
Multiply
More Steps

Evaluate
−2xy×y2
Multiply the terms with the same base by adding their exponents
−2xy1+2
Add the numbers
−2xy3
2x2−2xy3−1=0
To test if the graph of 2x2−2xy3−1=0 is symmetry with respect to the origin,substitute -x for x and -y for y
2(−x)2−2(−x)(−y)3−1=0
Evaluate
More Steps

Evaluate
2(−x)2−2(−x)(−y)3−1
Multiply the terms
2x2−2(−x)(−y)3−1
Multiply
More Steps

Multiply the terms
−2(−x)(−y)3
Any expression multiplied by 1 remains the same
2x(−y)3
Rewrite the expression
2x(−y3)
Multiply the numbers
−2xy3
2x2−2xy3−1
2x2−2xy3−1=0
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=3xy22x−y3
Calculate
2x2−2xyy2−1=0
Simplify the expression
2x2−2xy3−1=0
Take the derivative of both sides
dxd(2x2−2xy3−1)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(2x2−2xy3−1)
Use differentiation rules
dxd(2x2)+dxd(−2xy3)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(2x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x2)
Use dxdxn=nxn−1 to find derivative
2×2x
Multiply the terms
4x
4x+dxd(−2xy3)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy3)
Use differentiation rules
dxd(−2x)×y3−2x×dxd(y3)
Evaluate the derivative
−2y3−2x×dxd(y3)
Evaluate the derivative
−2y3−6xy2dxdy
4x−2y3−6xy2dxdy+dxd(−1)
Use dxd(c)=0 to find derivative
4x−2y3−6xy2dxdy+0
Evaluate
4x−2y3−6xy2dxdy
4x−2y3−6xy2dxdy=dxd(0)
Calculate the derivative
4x−2y3−6xy2dxdy=0
Move the expression to the right-hand side and change its sign
−6xy2dxdy=0−(4x−2y3)
Subtract the terms
More Steps

Evaluate
0−(4x−2y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−4x+2y3
Removing 0 doesn't change the value,so remove it from the expression
−4x+2y3
−6xy2dxdy=−4x+2y3
Divide both sides
−6xy2−6xy2dxdy=−6xy2−4x+2y3
Divide the numbers
dxdy=−6xy2−4x+2y3
Solution
More Steps

Evaluate
−6xy2−4x+2y3
Rewrite the expression
−6xy22(−2x+y3)
Cancel out the common factor 2
−3xy2−2x+y3
Use b−a=−ba=−ba to rewrite the fraction
−3xy2−2x+y3
Rewrite the expression
3xy22x−y3
dxdy=3xy22x−y3
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9y5x22y3x+4y6−8x2
Calculate
2x2−2xyy2−1=0
Simplify the expression
2x2−2xy3−1=0
Take the derivative of both sides
dxd(2x2−2xy3−1)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(2x2−2xy3−1)
Use differentiation rules
dxd(2x2)+dxd(−2xy3)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(2x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x2)
Use dxdxn=nxn−1 to find derivative
2×2x
Multiply the terms
4x
4x+dxd(−2xy3)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy3)
Use differentiation rules
dxd(−2x)×y3−2x×dxd(y3)
Evaluate the derivative
−2y3−2x×dxd(y3)
Evaluate the derivative
−2y3−6xy2dxdy
4x−2y3−6xy2dxdy+dxd(−1)
Use dxd(c)=0 to find derivative
4x−2y3−6xy2dxdy+0
Evaluate
4x−2y3−6xy2dxdy
4x−2y3−6xy2dxdy=dxd(0)
Calculate the derivative
4x−2y3−6xy2dxdy=0
Move the expression to the right-hand side and change its sign
−6xy2dxdy=0−(4x−2y3)
Subtract the terms
More Steps

Evaluate
0−(4x−2y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−4x+2y3
Removing 0 doesn't change the value,so remove it from the expression
−4x+2y3
−6xy2dxdy=−4x+2y3
Divide both sides
−6xy2−6xy2dxdy=−6xy2−4x+2y3
Divide the numbers
dxdy=−6xy2−4x+2y3
Divide the numbers
More Steps

Evaluate
−6xy2−4x+2y3
Rewrite the expression
−6xy22(−2x+y3)
Cancel out the common factor 2
−3xy2−2x+y3
Use b−a=−ba=−ba to rewrite the fraction
−3xy2−2x+y3
Rewrite the expression
3xy22x−y3
dxdy=3xy22x−y3
Take the derivative of both sides
dxd(dxdy)=dxd(3xy22x−y3)
Calculate the derivative
dx2d2y=dxd(3xy22x−y3)
Use differentiation rules
dx2d2y=(3xy2)2dxd(2x−y3)×3xy2−(2x−y3)×dxd(3xy2)
Calculate the derivative
More Steps

Evaluate
dxd(2x−y3)
Use differentiation rules
dxd(2x)+dxd(−y3)
Evaluate the derivative
2+dxd(−y3)
Evaluate the derivative
2−3y2dxdy
dx2d2y=(3xy2)2(2−3y2dxdy)×3xy2−(2x−y3)×dxd(3xy2)
Calculate the derivative
More Steps

Evaluate
dxd(3xy2)
Use differentiation rules
dxd(3)×xy2+3×dxd(x)×y2+3x×dxd(y2)
Use dxdxn=nxn−1 to find derivative
dxd(3)×xy2+3y2+3x×dxd(y2)
Evaluate the derivative
dxd(3)×xy2+3y2+6xydxdy
Calculate
3y2+6xydxdy
dx2d2y=(3xy2)2(2−3y2dxdy)×3xy2−(2x−y3)(3y2+6xydxdy)
Calculate
More Steps

Evaluate
(2−3y2dxdy)×3xy2
Use the the distributive property to expand the expression
2×3xy2−3y2dxdy×3xy2
Multiply the terms
6xy2−3y2dxdy×3xy2
Multiply the terms
6xy2−9y4dxdy×x
Use the commutative property to reorder the terms
6xy2−9y4xdxdy
dx2d2y=(3xy2)26xy2−9y4xdxdy−(2x−y3)(3y2+6xydxdy)
Calculate
More Steps

Evaluate
(2x−y3)(3y2+6xydxdy)
Use the the distributive property to expand the expression
(2x−y3)×3y2+(2x−y3)×6xydxdy
Multiply the terms
6xy2−3y5+(2x−y3)×6xydxdy
Multiply the terms
6xy2−3y5+12x2ydxdy−6y4xdxdy
dx2d2y=(3xy2)26xy2−9y4xdxdy−(6xy2−3y5+12x2ydxdy−6y4xdxdy)
Calculate
More Steps

Calculate
6xy2−9y4xdxdy−(6xy2−3y5+12x2ydxdy−6y4xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6xy2−9y4xdxdy−6xy2+3y5−12x2ydxdy+6y4xdxdy
The sum of two opposites equals 0
0−9y4xdxdy+3y5−12x2ydxdy+6y4xdxdy
Remove 0
−9y4xdxdy+3y5−12x2ydxdy+6y4xdxdy
Add the terms
−3y4xdxdy+3y5−12x2ydxdy
dx2d2y=(3xy2)2−3y4xdxdy+3y5−12x2ydxdy
Calculate
More Steps

Evaluate
(3xy2)2
Evaluate the power
32x2(y2)2
Evaluate the power
9x2(y2)2
Evaluate the power
9x2y4
dx2d2y=9x2y4−3y4xdxdy+3y5−12x2ydxdy
Calculate
dx2d2y=3x2y3−y3xdxdy+y4−4x2dxdy
Use equation dxdy=3xy22x−y3 to substitute
dx2d2y=3x2y3−y3x×3xy22x−y3+y4−4x2×3xy22x−y3
Solution
More Steps

Calculate
3x2y3−y3x×3xy22x−y3+y4−4x2×3xy22x−y3
Multiply the terms
3x2y3−3y(2x−y3)+y4−4x2×3xy22x−y3
Multiply the terms
3x2y3−3y(2x−y3)+y4−3y24x(2x−y3)
Calculate the sum or difference
More Steps

Evaluate
−3y(2x−y3)+y4−3y24x(2x−y3)
Reduce fractions to a common denominator
−3y2y(2x−y3)y2+3y2y4×3y2−3y24x(2x−y3)
Write all numerators above the common denominator
3y2−y(2x−y3)y2+y4×3y2−4x(2x−y3)
Multiply the terms
3y2−(2y3x−y6)+y4×3y2−4x(2x−y3)
Multiply the terms
3y2−(2y3x−y6)+3y6−4x(2x−y3)
Multiply the terms
3y2−(2y3x−y6)+3y6−(8x2−4y3x)
Calculate the sum or difference
3y22y3x+4y6−8x2
3x2y33y22y3x+4y6−8x2
Multiply by the reciprocal
3y22y3x+4y6−8x2×3x2y31
Multiply the terms
3y2×3x2y32y3x+4y6−8x2
Multiply the terms
More Steps

Evaluate
3y2×3x2y3
Multiply the numbers
9y2x2y3
Multiply the terms
9y5x2
9y5x22y3x+4y6−8x2
dx2d2y=9y5x22y3x+4y6−8x2
Show Solution
