Question
Find the roots
x1=45−33,x2=45+33
Alternative Form
x1≈−0.186141,x2≈2.686141
Evaluate
2x2−5x−1
To find the roots of the expression,set the expression equal to 0
2x2−5x−1=0
Substitute a=2,b=−5 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2×25±(−5)2−4×2(−1)
Simplify the expression
x=45±(−5)2−4×2(−1)
Simplify the expression
More Steps

Evaluate
(−5)2−4×2(−1)
Multiply
More Steps

Multiply the terms
4×2(−1)
Any expression multiplied by 1 remains the same
−4×2
Multiply the terms
−8
(−5)2−(−8)
Rewrite the expression
52−(−8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+8
Evaluate the power
25+8
Add the numbers
33
x=45±33
Separate the equation into 2 possible cases
x=45+33x=45−33
Solution
x1=45−33,x2=45+33
Alternative Form
x1≈−0.186141,x2≈2.686141
Show Solution
