Question
Find the roots
x1=45−217,x2=45+217
Alternative Form
x1≈−2.43273,x2≈4.93273
Evaluate
2x2−5x−24
To find the roots of the expression,set the expression equal to 0
2x2−5x−24=0
Substitute a=2,b=−5 and c=−24 into the quadratic formula x=2a−b±b2−4ac
x=2×25±(−5)2−4×2(−24)
Simplify the expression
x=45±(−5)2−4×2(−24)
Simplify the expression
More Steps

Evaluate
(−5)2−4×2(−24)
Multiply
More Steps

Multiply the terms
4×2(−24)
Rewrite the expression
−4×2×24
Multiply the terms
−192
(−5)2−(−192)
Rewrite the expression
52−(−192)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+192
Evaluate the power
25+192
Add the numbers
217
x=45±217
Separate the equation into 2 possible cases
x=45+217x=45−217
Solution
x1=45−217,x2=45+217
Alternative Form
x1≈−2.43273,x2≈4.93273
Show Solution
