Question
Simplify the expression
2x3−x2−13122x
Evaluate
2x3−x2−162x×81
Solution
2x3−x2−13122x
Show Solution

Factor the expression
x(2x2−x−13122)
Evaluate
2x3−x2−162x×81
Multiply the terms
2x3−x2−13122x
Rewrite the expression
x×2x2−x×x−x×13122
Solution
x(2x2−x−13122)
Show Solution

Find the roots
x1=41−104977,x2=0,x3=41+104977
Alternative Form
x1≈−80.750386,x2=0,x3≈81.250386
Evaluate
2x3−x2−162x×81
To find the roots of the expression,set the expression equal to 0
2x3−x2−162x×81=0
Multiply the terms
2x3−x2−13122x=0
Factor the expression
x(2x2−x−13122)=0
Separate the equation into 2 possible cases
x=02x2−x−13122=0
Solve the equation
More Steps

Evaluate
2x2−x−13122=0
Substitute a=2,b=−1 and c=−13122 into the quadratic formula x=2a−b±b2−4ac
x=2×21±(−1)2−4×2(−13122)
Simplify the expression
x=41±(−1)2−4×2(−13122)
Simplify the expression
More Steps

Evaluate
(−1)2−4×2(−13122)
Evaluate the power
1−4×2(−13122)
Multiply
1−(−104976)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+104976
Add the numbers
104977
x=41±104977
Separate the equation into 2 possible cases
x=41+104977x=41−104977
x=0x=41+104977x=41−104977
Solution
x1=41−104977,x2=0,x3=41+104977
Alternative Form
x1≈−80.750386,x2=0,x3≈81.250386
Show Solution
