Question
Simplify the expression
2x3−x2−162x
Evaluate
2x3−x2−18x×9
Solution
2x3−x2−162x
Show Solution

Factor the expression
x(2x2−x−162)
Evaluate
2x3−x2−18x×9
Multiply the terms
2x3−x2−162x
Rewrite the expression
x×2x2−x×x−x×162
Solution
x(2x2−x−162)
Show Solution

Find the roots
x1=41−1297,x2=0,x3=41+1297
Alternative Form
x1≈−8.753472,x2=0,x3≈9.253472
Evaluate
2x3−x2−18x×9
To find the roots of the expression,set the expression equal to 0
2x3−x2−18x×9=0
Multiply the terms
2x3−x2−162x=0
Factor the expression
x(2x2−x−162)=0
Separate the equation into 2 possible cases
x=02x2−x−162=0
Solve the equation
More Steps

Evaluate
2x2−x−162=0
Substitute a=2,b=−1 and c=−162 into the quadratic formula x=2a−b±b2−4ac
x=2×21±(−1)2−4×2(−162)
Simplify the expression
x=41±(−1)2−4×2(−162)
Simplify the expression
More Steps

Evaluate
(−1)2−4×2(−162)
Evaluate the power
1−4×2(−162)
Multiply
1−(−1296)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+1296
Add the numbers
1297
x=41±1297
Separate the equation into 2 possible cases
x=41+1297x=41−1297
x=0x=41+1297x=41−1297
Solution
x1=41−1297,x2=0,x3=41+1297
Alternative Form
x1≈−8.753472,x2=0,x3≈9.253472
Show Solution
