Question
Factor the expression
x2(2x−1−8x2)
Evaluate
2x3−x2−8x4
Rewrite the expression
x2×2x−x2−x2×8x2
Solution
x2(2x−1−8x2)
Show Solution

Find the roots
x1=81−87i,x2=81+87i,x3=0
Alternative Form
x1≈0.125−0.330719i,x2≈0.125+0.330719i,x3=0
Evaluate
2x3−x2−8x4
To find the roots of the expression,set the expression equal to 0
2x3−x2−8x4=0
Factor the expression
x2(2x−1−8x2)=0
Separate the equation into 2 possible cases
x2=02x−1−8x2=0
The only way a power can be 0 is when the base equals 0
x=02x−1−8x2=0
Solve the equation
More Steps

Evaluate
2x−1−8x2=0
Rewrite in standard form
−8x2+2x−1=0
Multiply both sides
8x2−2x+1=0
Substitute a=8,b=−2 and c=1 into the quadratic formula x=2a−b±b2−4ac
x=2×82±(−2)2−4×8
Simplify the expression
x=162±(−2)2−4×8
Simplify the expression
More Steps

Evaluate
(−2)2−4×8
Multiply the numbers
(−2)2−32
Rewrite the expression
22−32
Evaluate the power
4−32
Subtract the numbers
−28
x=162±−28
Simplify the radical expression
More Steps

Evaluate
−28
Evaluate the power
28×−1
Evaluate the power
28×i
Evaluate the power
27×i
x=162±27×i
Separate the equation into 2 possible cases
x=162+27×ix=162−27×i
Simplify the expression
x=81+87ix=162−27×i
Simplify the expression
x=81+87ix=81−87i
x=0x=81+87ix=81−87i
Solution
x1=81−87i,x2=81+87i,x3=0
Alternative Form
x1≈0.125−0.330719i,x2≈0.125+0.330719i,x3=0
Show Solution
