Question
Solve the equation
Solve for x
Solve for y
x=0x=3679x=−3679
Evaluate
2x3y=12222xy
Rewrite the expression
2yx3=12222yx
Add or subtract both sides
2yx3−12222yx=0
Factor the expression
2yx(x2−6111)=0
Divide both sides
x(x2−6111)=0
Separate the equation into 2 possible cases
x=0x2−6111=0
Solution
More Steps

Evaluate
x2−6111=0
Move the constant to the right-hand side and change its sign
x2=0+6111
Removing 0 doesn't change the value,so remove it from the expression
x2=6111
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±6111
Simplify the expression
More Steps

Evaluate
6111
Write the expression as a product where the root of one of the factors can be evaluated
9×679
Write the number in exponential form with the base of 3
32×679
The root of a product is equal to the product of the roots of each factor
32×679
Reduce the index of the radical and exponent with 2
3679
x=±3679
Separate the equation into 2 possible cases
x=3679x=−3679
x=0x=3679x=−3679
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
2x3y=12222xy
To test if the graph of 2x3y=12222xy is symmetry with respect to the origin,substitute -x for x and -y for y
2(−x)3(−y)=12222(−x)(−y)
Evaluate
More Steps

Evaluate
2(−x)3(−y)
Any expression multiplied by 1 remains the same
−2(−x)3y
Multiply the terms
More Steps

Evaluate
2(−x)3
Rewrite the expression
2(−x3)
Multiply the numbers
−2x3
−(−2x3y)
Multiply the first two terms
2x3y
2x3y=12222(−x)(−y)
Evaluate
2x3y=12222xy
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=3679×∣sec(θ)∣r=−3679×∣sec(θ)∣
Evaluate
2x3y=12222xy
Move the expression to the left side
2x3y−12222xy=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
2(cos(θ)×r)3sin(θ)×r−12222cos(θ)×rsin(θ)×r=0
Factor the expression
2cos3(θ)sin(θ)×r4−12222cos(θ)sin(θ)×r2=0
Simplify the expression
2cos3(θ)sin(θ)×r4−6111sin(2θ)×r2=0
Factor the expression
r2(2cos3(θ)sin(θ)×r2−6111sin(2θ))=0
When the product of factors equals 0,at least one factor is 0
r2=02cos3(θ)sin(θ)×r2−6111sin(2θ)=0
Evaluate
r=02cos3(θ)sin(θ)×r2−6111sin(2θ)=0
Solution
More Steps

Factor the expression
2cos3(θ)sin(θ)×r2−6111sin(2θ)=0
Subtract the terms
2cos3(θ)sin(θ)×r2−6111sin(2θ)−(−6111sin(2θ))=0−(−6111sin(2θ))
Evaluate
2cos3(θ)sin(θ)×r2=6111sin(2θ)
Divide the terms
r2=2cos3(θ)sin(θ)6111sin(2θ)
Simplify the expression
r2=6111sec2(θ)
Evaluate the power
r=±6111sec2(θ)
Simplify the expression
More Steps

Evaluate
6111sec2(θ)
Write the expression as a product where the root of one of the factors can be evaluated
9×679sec2(θ)
Write the number in exponential form with the base of 3
32×679sec2(θ)
Rewrite the expression
32sec2(θ)×679
Calculate
3∣sec(θ)∣×679
Calculate
3679×∣sec(θ)∣
r=±(3679×∣sec(θ)∣)
Separate into possible cases
r=3679×∣sec(θ)∣r=−3679×∣sec(θ)∣
r=0r=3679×∣sec(θ)∣r=−3679×∣sec(θ)∣
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=x3−6111x6111y−3x2y
Calculate
2x3y=12222xy
Take the derivative of both sides
dxd(2x3y)=dxd(12222xy)
Calculate the derivative
More Steps

Evaluate
dxd(2x3y)
Use differentiation rules
dxd(2x3)×y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x3)
Use dxdxn=nxn−1 to find derivative
2×3x2
Multiply the terms
6x2
6x2y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
6x2y+2x3dxdy
6x2y+2x3dxdy=dxd(12222xy)
Calculate the derivative
More Steps

Evaluate
dxd(12222xy)
Use differentiation rules
dxd(12222x)×y+12222x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(12222x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
12222×dxd(x)
Use dxdxn=nxn−1 to find derivative
12222×1
Any expression multiplied by 1 remains the same
12222
12222y+12222x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
12222y+12222xdxdy
6x2y+2x3dxdy=12222y+12222xdxdy
Move the expression to the left side
6x2y+2x3dxdy−12222xdxdy=12222y
Move the expression to the right side
2x3dxdy−12222xdxdy=12222y−6x2y
Collect like terms by calculating the sum or difference of their coefficients
(2x3−12222x)dxdy=12222y−6x2y
Divide both sides
2x3−12222x(2x3−12222x)dxdy=2x3−12222x12222y−6x2y
Divide the numbers
dxdy=2x3−12222x12222y−6x2y
Solution
More Steps

Evaluate
2x3−12222x12222y−6x2y
Rewrite the expression
2x3−12222x2(6111y−3x2y)
Rewrite the expression
2(x3−6111x)2(6111y−3x2y)
Reduce the fraction
x3−6111x6111y−3x2y
dxdy=x3−6111x6111y−3x2y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x6−12222x4+61112x2−36666yx2+12yx4+74688642y
Calculate
2x3y=12222xy
Take the derivative of both sides
dxd(2x3y)=dxd(12222xy)
Calculate the derivative
More Steps

Evaluate
dxd(2x3y)
Use differentiation rules
dxd(2x3)×y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x3)
Use dxdxn=nxn−1 to find derivative
2×3x2
Multiply the terms
6x2
6x2y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
6x2y+2x3dxdy
6x2y+2x3dxdy=dxd(12222xy)
Calculate the derivative
More Steps

Evaluate
dxd(12222xy)
Use differentiation rules
dxd(12222x)×y+12222x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(12222x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
12222×dxd(x)
Use dxdxn=nxn−1 to find derivative
12222×1
Any expression multiplied by 1 remains the same
12222
12222y+12222x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
12222y+12222xdxdy
6x2y+2x3dxdy=12222y+12222xdxdy
Move the expression to the left side
6x2y+2x3dxdy−12222xdxdy=12222y
Move the expression to the right side
2x3dxdy−12222xdxdy=12222y−6x2y
Collect like terms by calculating the sum or difference of their coefficients
(2x3−12222x)dxdy=12222y−6x2y
Divide both sides
2x3−12222x(2x3−12222x)dxdy=2x3−12222x12222y−6x2y
Divide the numbers
dxdy=2x3−12222x12222y−6x2y
Divide the numbers
More Steps

Evaluate
2x3−12222x12222y−6x2y
Rewrite the expression
2x3−12222x2(6111y−3x2y)
Rewrite the expression
2(x3−6111x)2(6111y−3x2y)
Reduce the fraction
x3−6111x6111y−3x2y
dxdy=x3−6111x6111y−3x2y
Take the derivative of both sides
dxd(dxdy)=dxd(x3−6111x6111y−3x2y)
Calculate the derivative
dx2d2y=dxd(x3−6111x6111y−3x2y)
Use differentiation rules
dx2d2y=(x3−6111x)2dxd(6111y−3x2y)×(x3−6111x)−(6111y−3x2y)×dxd(x3−6111x)
Calculate the derivative
More Steps

Evaluate
dxd(6111y−3x2y)
Use differentiation rules
dxd(6111y)+dxd(−3x2y)
Evaluate the derivative
6111dxdy+dxd(−3x2y)
Evaluate the derivative
6111dxdy−6xy−3x2dxdy
dx2d2y=(x3−6111x)2(6111dxdy−6xy−3x2dxdy)(x3−6111x)−(6111y−3x2y)×dxd(x3−6111x)
Calculate the derivative
More Steps

Evaluate
dxd(x3−6111x)
Use differentiation rules
dxd(x3)+dxd(−6111x)
Use dxdxn=nxn−1 to find derivative
3x2+dxd(−6111x)
Evaluate the derivative
3x2−6111
dx2d2y=(x3−6111x)2(6111dxdy−6xy−3x2dxdy)(x3−6111x)−(6111y−3x2y)(3x2−6111)
Calculate
More Steps

Evaluate
(6111dxdy−6xy−3x2dxdy)(x3−6111x)
Use the the distributive property to expand the expression
6111dxdy×(x3−6111x)+(−6xy−3x2dxdy)(x3−6111x)
Multiply the terms
6111x3dxdy−37344321xdxdy+(−6xy−3x2dxdy)(x3−6111x)
Multiply the terms
6111x3dxdy−37344321xdxdy−6x4y+36666x2y−3x5dxdy+18333x3dxdy
Calculate
24444x3dxdy−37344321xdxdy−6x4y+36666x2y−3x5dxdy
dx2d2y=(x3−6111x)224444x3dxdy−37344321xdxdy−6x4y+36666x2y−3x5dxdy−(6111y−3x2y)(3x2−6111)
Calculate
More Steps

Evaluate
(6111y−3x2y)(3x2−6111)
Use the the distributive property to expand the expression
(6111y−3x2y)×3x2+(6111y−3x2y)(−6111)
Multiply the terms
18333yx2−9x4y+(6111y−3x2y)(−6111)
Multiply the terms
18333yx2−9x4y−37344321y+18333x2y
Calculate
36666yx2−9x4y−37344321y
dx2d2y=(x3−6111x)224444x3dxdy−37344321xdxdy−6x4y+36666x2y−3x5dxdy−(36666yx2−9x4y−37344321y)
Calculate
More Steps

Calculate
24444x3dxdy−37344321xdxdy−6x4y+36666x2y−3x5dxdy−(36666yx2−9x4y−37344321y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
24444x3dxdy−37344321xdxdy−6x4y+36666x2y−3x5dxdy−36666yx2+9x4y+37344321y
Add the terms
24444x3dxdy−37344321xdxdy+3x4y+36666x2y−3x5dxdy−36666yx2+37344321y
Subtract the terms
24444x3dxdy−37344321xdxdy+3x4y+0−3x5dxdy+37344321y
Removing 0 doesn't change the value,so remove it from the expression
24444x3dxdy−37344321xdxdy+3x4y−3x5dxdy+37344321y
dx2d2y=(x3−6111x)224444x3dxdy−37344321xdxdy+3x4y−3x5dxdy+37344321y
Use equation dxdy=x3−6111x6111y−3x2y to substitute
dx2d2y=(x3−6111x)224444x3×x3−6111x6111y−3x2y−37344321x×x3−6111x6111y−3x2y+3x4y−3x5×x3−6111x6111y−3x2y+37344321y
Solution
More Steps

Calculate
(x3−6111x)224444x3×x3−6111x6111y−3x2y−37344321x×x3−6111x6111y−3x2y+3x4y−3x5×x3−6111x6111y−3x2y+37344321y
Multiply the terms
More Steps

Multiply the terms
24444x3×x3−6111x6111y−3x2y
Rewrite the expression
24444x3×x(x2−6111)6111y−3x2y
Cancel out the common factor x
24444x2×x2−61116111y−3x2y
Multiply the terms
x2−611124444x2(6111y−3x2y)
(x3−6111x)2x2−611124444x2(6111y−3x2y)−37344321x×x3−6111x6111y−3x2y+3x4y−3x5×x3−6111x6111y−3x2y+37344321y
Multiply the terms
(x3−6111x)2x2−611124444x2(6111y−3x2y)−x2−611137344321(6111y−3x2y)+3x4y−3x5×x3−6111x6111y−3x2y+37344321y
Multiply the terms
(x3−6111x)2x2−611124444x2(6111y−3x2y)−x2−611137344321(6111y−3x2y)+3x4y−x2−61113x4(6111y−3x2y)+37344321y
Calculate the sum or difference
More Steps

Evaluate
x2−611124444x2(6111y−3x2y)−x2−611137344321(6111y−3x2y)+3x4y−x2−61113x4(6111y−3x2y)+37344321y
Reduce fractions to a common denominator
x2−611124444x2(6111y−3x2y)−x2−611137344321(6111y−3x2y)+x2−61113x4y(x2−6111)−x2−61113x4(6111y−3x2y)+x2−611137344321y(x2−6111)
Write all numerators above the common denominator
x2−611124444x2(6111y−3x2y)−37344321(6111y−3x2y)+3x4y(x2−6111)−3x4(6111y−3x2y)+37344321y(x2−6111)
Multiply the terms
x2−6111149377284yx2−73332x4y−37344321(6111y−3x2y)+3x4y(x2−6111)−3x4(6111y−3x2y)+37344321y(x2−6111)
Multiply the terms
x2−6111149377284yx2−73332x4y−(228211145631y−112032963x2y)+3x4y(x2−6111)−3x4(6111y−3x2y)+37344321y(x2−6111)
Multiply the terms
x2−6111149377284yx2−73332x4y−(228211145631y−112032963x2y)+3x6y−18333x4y−3x4(6111y−3x2y)+37344321y(x2−6111)
Multiply the terms
x2−6111149377284yx2−73332x4y−(228211145631y−112032963x2y)+3x6y−18333x4y−(18333yx4−9x6y)+37344321y(x2−6111)
Multiply the terms
x2−6111149377284yx2−73332x4y−(228211145631y−112032963x2y)+3x6y−18333x4y−(18333yx4−9x6y)+37344321x2y−228211145631y
Calculate the sum or difference
x2−6111298754568yx2−109998x4y−456422291262y+12x6y
Factor the expression
x2−6111(x2−6111)(−36666yx2+12yx4+74688642y)
Reduce the fraction
−36666yx2+12yx4+74688642y
(x3−6111x)2−36666yx2+12yx4+74688642y
Expand the expression
More Steps

Evaluate
(x3−6111x)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(x3)2−2x3×6111x+(6111x)2
Calculate
x6−12222x4+61112x2
x6−12222x4+61112x2−36666yx2+12yx4+74688642y
dx2d2y=x6−12222x4+61112x2−36666yx2+12yx4+74688642y
Show Solution
