Question
Solve the equation
y=2x3+15x
Evaluate
2x3y=5x−y
Move the variable to the left side
2x3y+y=5x
Collect like terms by calculating the sum or difference of their coefficients
(2x3+1)y=5x
Divide both sides
2x3+1(2x3+1)y=2x3+15x
Solution
y=2x3+15x
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
2x3y=5x−y
To test if the graph of 2x3y=5x−y is symmetry with respect to the origin,substitute -x for x and -y for y
2(−x)3(−y)=5(−x)−(−y)
Evaluate
More Steps

Evaluate
2(−x)3(−y)
Any expression multiplied by 1 remains the same
−2(−x)3y
Multiply the terms
More Steps

Evaluate
2(−x)3
Rewrite the expression
2(−x3)
Multiply the numbers
−2x3
−(−2x3y)
Multiply the first two terms
2x3y
2x3y=5(−x)−(−y)
Evaluate
More Steps

Evaluate
5(−x)−(−y)
Multiply the numbers
−5x−(−y)
Rewrite the expression
−5x+y
2x3y=−5x+y
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=3235sec2(θ)csc(θ)−sec3(θ)
Evaluate
2x3y=5x−y
Move the expression to the left side
2x3y−5x+y=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
2(cos(θ)×r)3sin(θ)×r−5cos(θ)×r+sin(θ)×r=0
Factor the expression
2cos3(θ)sin(θ)×r4+(−5cos(θ)+sin(θ))r=0
Factor the expression
r(2(rcos(θ))3sin(θ)−5cos(θ)+sin(θ))=0
When the product of factors equals 0,at least one factor is 0
r=02(rcos(θ))3sin(θ)−5cos(θ)+sin(θ)=0
Solution
More Steps

Factor the expression
2cos3(θ)sin(θ)×r3−5cos(θ)+sin(θ)=0
Subtract the terms
2cos3(θ)sin(θ)×r3−5cos(θ)+sin(θ)−(−5cos(θ)+sin(θ))=0−(−5cos(θ)+sin(θ))
Evaluate
2cos3(θ)sin(θ)×r3=5cos(θ)−sin(θ)
Divide the terms
r3=2cos3(θ)sin(θ)5cos(θ)−sin(θ)
Simplify the expression
r3=25sec2(θ)csc(θ)−sec3(θ)
To take a root of a fraction,take the root of the numerator and denominator separately
r=3235sec2(θ)csc(θ)−sec3(θ)
r=0r=3235sec2(θ)csc(θ)−sec3(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=2x3+15−6x2y
Calculate
2x3y=5x−y
Take the derivative of both sides
dxd(2x3y)=dxd(5x−y)
Calculate the derivative
More Steps

Evaluate
dxd(2x3y)
Use differentiation rules
dxd(2x3)×y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x3)
Use dxdxn=nxn−1 to find derivative
2×3x2
Multiply the terms
6x2
6x2y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
6x2y+2x3dxdy
6x2y+2x3dxdy=dxd(5x−y)
Calculate the derivative
More Steps

Evaluate
dxd(5x−y)
Use differentiation rules
dxd(5x)+dxd(−y)
Evaluate the derivative
More Steps

Evaluate
dxd(5x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
5×dxd(x)
Use dxdxn=nxn−1 to find derivative
5×1
Any expression multiplied by 1 remains the same
5
5+dxd(−y)
Evaluate the derivative
More Steps

Evaluate
dxd(−y)
Use differentiation rules
dyd(−y)×dxdy
Evaluate the derivative
−dxdy
5−dxdy
6x2y+2x3dxdy=5−dxdy
Move the expression to the left side
6x2y+2x3dxdy+dxdy=5
Move the expression to the right side
2x3dxdy+dxdy=5−6x2y
Collect like terms by calculating the sum or difference of their coefficients
(2x3+1)dxdy=5−6x2y
Divide both sides
2x3+1(2x3+1)dxdy=2x3+15−6x2y
Solution
dxdy=2x3+15−6x2y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=4x6+4x3+148x4y−12xy−60x2
Calculate
2x3y=5x−y
Take the derivative of both sides
dxd(2x3y)=dxd(5x−y)
Calculate the derivative
More Steps

Evaluate
dxd(2x3y)
Use differentiation rules
dxd(2x3)×y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(2x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x3)
Use dxdxn=nxn−1 to find derivative
2×3x2
Multiply the terms
6x2
6x2y+2x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
6x2y+2x3dxdy
6x2y+2x3dxdy=dxd(5x−y)
Calculate the derivative
More Steps

Evaluate
dxd(5x−y)
Use differentiation rules
dxd(5x)+dxd(−y)
Evaluate the derivative
More Steps

Evaluate
dxd(5x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
5×dxd(x)
Use dxdxn=nxn−1 to find derivative
5×1
Any expression multiplied by 1 remains the same
5
5+dxd(−y)
Evaluate the derivative
More Steps

Evaluate
dxd(−y)
Use differentiation rules
dyd(−y)×dxdy
Evaluate the derivative
−dxdy
5−dxdy
6x2y+2x3dxdy=5−dxdy
Move the expression to the left side
6x2y+2x3dxdy+dxdy=5
Move the expression to the right side
2x3dxdy+dxdy=5−6x2y
Collect like terms by calculating the sum or difference of their coefficients
(2x3+1)dxdy=5−6x2y
Divide both sides
2x3+1(2x3+1)dxdy=2x3+15−6x2y
Divide the numbers
dxdy=2x3+15−6x2y
Take the derivative of both sides
dxd(dxdy)=dxd(2x3+15−6x2y)
Calculate the derivative
dx2d2y=dxd(2x3+15−6x2y)
Use differentiation rules
dx2d2y=(2x3+1)2dxd(5−6x2y)×(2x3+1)−(5−6x2y)×dxd(2x3+1)
Calculate the derivative
More Steps

Evaluate
dxd(5−6x2y)
Use differentiation rules
dxd(5)+dxd(−6x2y)
Use dxd(c)=0 to find derivative
0+dxd(−6x2y)
Evaluate the derivative
0−12xy−6x2dxdy
Evaluate
−12xy−6x2dxdy
dx2d2y=(2x3+1)2(−12xy−6x2dxdy)(2x3+1)−(5−6x2y)×dxd(2x3+1)
Calculate the derivative
More Steps

Evaluate
dxd(2x3+1)
Use differentiation rules
dxd(2x3)+dxd(1)
Evaluate the derivative
6x2+dxd(1)
Use dxd(c)=0 to find derivative
6x2+0
Evaluate
6x2
dx2d2y=(2x3+1)2(−12xy−6x2dxdy)(2x3+1)−(5−6x2y)×6x2
Calculate
More Steps

Evaluate
(−12xy−6x2dxdy)(2x3+1)
Apply the distributive property
−12xy×2x3−12xy×1−6x2dxdy×2x3−6x2dxdy×1
Multiply the terms
−24x4y−12xy×1−6x2dxdy×2x3−6x2dxdy×1
Any expression multiplied by 1 remains the same
−24x4y−12xy−6x2dxdy×2x3−6x2dxdy×1
Multiply the terms
−24x4y−12xy−12x5dxdy−6x2dxdy×1
Any expression multiplied by 1 remains the same
−24x4y−12xy−12x5dxdy−6x2dxdy
dx2d2y=(2x3+1)2−24x4y−12xy−12x5dxdy−6x2dxdy−(5−6x2y)×6x2
Calculate
More Steps

Evaluate
(5−6x2y)×6x2
Apply the distributive property
5×6x2−6x2y×6x2
Multiply the numbers
30x2−6x2y×6x2
Multiply the terms
30x2−36x4y
dx2d2y=(2x3+1)2−24x4y−12xy−12x5dxdy−6x2dxdy−(30x2−36x4y)
Calculate
More Steps

Calculate
−24x4y−12xy−12x5dxdy−6x2dxdy−(30x2−36x4y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24x4y−12xy−12x5dxdy−6x2dxdy−30x2+36x4y
Add the terms
12x4y−12xy−12x5dxdy−6x2dxdy−30x2
dx2d2y=(2x3+1)212x4y−12xy−12x5dxdy−6x2dxdy−30x2
Use equation dxdy=2x3+15−6x2y to substitute
dx2d2y=(2x3+1)212x4y−12xy−12x5×2x3+15−6x2y−6x2×2x3+15−6x2y−30x2
Solution
More Steps

Calculate
(2x3+1)212x4y−12xy−12x5×2x3+15−6x2y−6x2×2x3+15−6x2y−30x2
Multiply the terms
(2x3+1)212x4y−12xy−2x3+112x5(5−6x2y)−6x2×2x3+15−6x2y−30x2
Multiply the terms
(2x3+1)212x4y−12xy−2x3+112x5(5−6x2y)−2x3+16x2(5−6x2y)−30x2
Subtract the terms
More Steps

Evaluate
12x4y−12xy−2x3+112x5(5−6x2y)−2x3+16x2(5−6x2y)−30x2
Reduce fractions to a common denominator
2x3+112x4y(2x3+1)−2x3+112xy(2x3+1)−2x3+112x5(5−6x2y)−2x3+16x2(5−6x2y)−2x3+130x2(2x3+1)
Write all numerators above the common denominator
2x3+112x4y(2x3+1)−12xy(2x3+1)−12x5(5−6x2y)−6x2(5−6x2y)−30x2(2x3+1)
Multiply the terms
2x3+124x7y+12x4y−12xy(2x3+1)−12x5(5−6x2y)−6x2(5−6x2y)−30x2(2x3+1)
Multiply the terms
2x3+124x7y+12x4y−(24x4y+12xy)−12x5(5−6x2y)−6x2(5−6x2y)−30x2(2x3+1)
Multiply the terms
2x3+124x7y+12x4y−(24x4y+12xy)−(60x5−72x7y)−6x2(5−6x2y)−30x2(2x3+1)
Multiply the terms
2x3+124x7y+12x4y−(24x4y+12xy)−(60x5−72x7y)−(30x2−36x4y)−30x2(2x3+1)
Multiply the terms
2x3+124x7y+12x4y−(24x4y+12xy)−(60x5−72x7y)−(30x2−36x4y)−(60x5+30x2)
Calculate the sum or difference
2x3+196x7y+24x4y−12xy−120x5−60x2
Factor the expression
2x3+1(2x3+1)(48x4y−12xy−60x2)
Reduce the fraction
48x4y−12xy−60x2
(2x3+1)248x4y−12xy−60x2
Expand the expression
More Steps

Evaluate
(2x3+1)2
Use (a+b)2=a2+2ab+b2 to expand the expression
(2x3)2+2×2x3×1+12
Calculate
4x6+4x3+1
4x6+4x3+148x4y−12xy−60x2
dx2d2y=4x6+4x3+148x4y−12xy−60x2
Show Solution
