Question
Simplify the expression
2x4−x3−4480x6
Evaluate
2x4−x3−35x2×16x4×8
Solution
More Steps

Evaluate
−35x2×16x4×8
Multiply the terms
More Steps

Evaluate
35×16×8
Multiply the terms
560×8
Multiply the numbers
4480
−4480x2×x4
Multiply the terms with the same base by adding their exponents
−4480x2+4
Add the numbers
−4480x6
2x4−x3−4480x6
Show Solution

Factor the expression
x3(2x−1−4480x3)
Evaluate
2x4−x3−35x2×16x4×8
Multiply
More Steps

Evaluate
35x2×16x4×8
Multiply the terms
More Steps

Evaluate
35×16×8
Multiply the terms
560×8
Multiply the numbers
4480
4480x2×x4
Multiply the terms with the same base by adding their exponents
4480x2+4
Add the numbers
4480x6
2x4−x3−4480x6
Rewrite the expression
x3×2x−x3−x3×4480x3
Solution
x3(2x−1−4480x3)
Show Solution

Find the roots
x1≈−0.063113,x2=0
Evaluate
2x4−x3−35x2×16x4×8
To find the roots of the expression,set the expression equal to 0
2x4−x3−35x2×16x4×8=0
Multiply
More Steps

Multiply the terms
35x2×16x4×8
Multiply the terms
More Steps

Evaluate
35×16×8
Multiply the terms
560×8
Multiply the numbers
4480
4480x2×x4
Multiply the terms with the same base by adding their exponents
4480x2+4
Add the numbers
4480x6
2x4−x3−4480x6=0
Factor the expression
x3(2x−1−4480x3)=0
Separate the equation into 2 possible cases
x3=02x−1−4480x3=0
The only way a power can be 0 is when the base equals 0
x=02x−1−4480x3=0
Solve the equation
x=0x≈−0.063113
Solution
x1≈−0.063113,x2=0
Show Solution
