Question
Simplify the expression
6x2−25x+14
Evaluate
2x(3x−2)−7(3x−2)
Expand the expression
More Steps

Calculate
2x(3x−2)
Apply the distributive property
2x×3x−2x×2
Multiply the terms
More Steps

Evaluate
2x×3x
Multiply the numbers
6x×x
Multiply the terms
6x2
6x2−2x×2
Multiply the numbers
6x2−4x
6x2−4x−7(3x−2)
Expand the expression
More Steps

Calculate
−7(3x−2)
Apply the distributive property
−7×3x−(−7×2)
Multiply the numbers
−21x−(−7×2)
Multiply the numbers
−21x−(−14)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−21x+14
6x2−4x−21x+14
Solution
More Steps

Evaluate
−4x−21x
Collect like terms by calculating the sum or difference of their coefficients
(−4−21)x
Subtract the numbers
−25x
6x2−25x+14
Show Solution

Factor the expression
(2x−7)(3x−2)
Evaluate
2x(3x−2)−7(3x−2)
Solution
(2x−7)(3x−2)
Show Solution

Find the roots
x1=32,x2=27
Alternative Form
x1=0.6˙,x2=3.5
Evaluate
2x(3x−2)−7(3x−2)
To find the roots of the expression,set the expression equal to 0
2x(3x−2)−7(3x−2)=0
Calculate
More Steps

Evaluate
2x(3x−2)−7(3x−2)
Expand the expression
More Steps

Calculate
2x(3x−2)
Apply the distributive property
2x×3x−2x×2
Multiply the terms
6x2−2x×2
Multiply the numbers
6x2−4x
6x2−4x−7(3x−2)
Expand the expression
More Steps

Calculate
−7(3x−2)
Apply the distributive property
−7×3x−(−7×2)
Multiply the numbers
−21x−(−7×2)
Multiply the numbers
−21x−(−14)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−21x+14
6x2−4x−21x+14
Subtract the terms
More Steps

Evaluate
−4x−21x
Collect like terms by calculating the sum or difference of their coefficients
(−4−21)x
Subtract the numbers
−25x
6x2−25x+14
6x2−25x+14=0
Factor the expression
More Steps

Evaluate
6x2−25x+14
Rewrite the expression
6x2+(−4−21)x+14
Calculate
6x2−4x−21x+14
Rewrite the expression
2x×3x−2x×2−7×3x+7×2
Factor out 2x from the expression
2x(3x−2)−7×3x+7×2
Factor out −7 from the expression
2x(3x−2)−7(3x−2)
Factor out 3x−2 from the expression
(2x−7)(3x−2)
(2x−7)(3x−2)=0
When the product of factors equals 0,at least one factor is 0
2x−7=03x−2=0
Solve the equation for x
More Steps

Evaluate
2x−7=0
Move the constant to the right-hand side and change its sign
2x=0+7
Removing 0 doesn't change the value,so remove it from the expression
2x=7
Divide both sides
22x=27
Divide the numbers
x=27
x=273x−2=0
Solve the equation for x
More Steps

Evaluate
3x−2=0
Move the constant to the right-hand side and change its sign
3x=0+2
Removing 0 doesn't change the value,so remove it from the expression
3x=2
Divide both sides
33x=32
Divide the numbers
x=32
x=27x=32
Solution
x1=32,x2=27
Alternative Form
x1=0.6˙,x2=3.5
Show Solution
