Question
Simplify the expression
50x3−120x2+72x
Evaluate
2x(5x−6)2
Expand the expression
More Steps

Evaluate
(5x−6)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(5x)2−2×5x×6+62
Calculate
25x2−60x+36
2x(25x2−60x+36)
Apply the distributive property
2x×25x2−2x×60x+2x×36
Multiply the terms
More Steps

Evaluate
2x×25x2
Multiply the numbers
50x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
50x3
50x3−2x×60x+2x×36
Multiply the terms
More Steps

Evaluate
2x×60x
Multiply the numbers
120x×x
Multiply the terms
120x2
50x3−120x2+2x×36
Solution
50x3−120x2+72x
Show Solution

Find the roots
x1=0,x2=56
Alternative Form
x1=0,x2=1.2
Evaluate
2x(5x−6)2
To find the roots of the expression,set the expression equal to 0
2x(5x−6)2=0
Elimination the left coefficient
x(5x−6)2=0
Separate the equation into 2 possible cases
x=0(5x−6)2=0
Solve the equation
More Steps

Evaluate
(5x−6)2=0
The only way a power can be 0 is when the base equals 0
5x−6=0
Move the constant to the right-hand side and change its sign
5x=0+6
Removing 0 doesn't change the value,so remove it from the expression
5x=6
Divide both sides
55x=56
Divide the numbers
x=56
x=0x=56
Solution
x1=0,x2=56
Alternative Form
x1=0,x2=1.2
Show Solution
