Question
Solve the equation
x=0
Evaluate
2x(x−1)−3x3=0
Calculate
More Steps

Evaluate
2x(x−1)
Apply the distributive property
2x×x−2x×1
Multiply the terms
2x2−2x×1
Any expression multiplied by 1 remains the same
2x2−2x
2x2−2x−3x3=0
Factor the expression
x(2x−2−3x2)=0
Separate the equation into 2 possible cases
x=02x−2−3x2=0
Solve the equation
More Steps

Evaluate
2x−2−3x2=0
Rewrite in standard form
−3x2+2x−2=0
Multiply both sides
3x2−2x+2=0
Substitute a=3,b=−2 and c=2 into the quadratic formula x=2a−b±b2−4ac
x=2×32±(−2)2−4×3×2
Simplify the expression
x=62±(−2)2−4×3×2
Simplify the expression
More Steps

Evaluate
(−2)2−4×3×2
Multiply the terms
(−2)2−24
Rewrite the expression
22−24
Evaluate the power
4−24
Subtract the numbers
−20
x=62±−20
The expression is undefined in the set of real numbers
x∈/R
x=0x∈/R
Solution
x=0
Show Solution
