Question
Solve the equation
x1=10295−87235,x2=10295+87235
Alternative Form
x1≈−0.035572,x2≈59.035572
Evaluate
2x−97−5x×x−34x=67
Simplify
More Steps

Evaluate
2x−97−5x×x−34x
Multiply the terms
More Steps

Multiply the terms
−97−5x×x
Multiply the terms
−9(7−5x)x
Multiply the terms
−9x(7−5x)
2x−9x(7−5x)−34x
Subtract the terms
More Steps

Evaluate
2x−34x
Collect like terms by calculating the sum or difference of their coefficients
(2−34)x
Subtract the numbers
−32x
−32x−9x(7−5x)
−32x−9x(7−5x)=67
Multiply both sides of the equation by LCD
(−32x−9x(7−5x))×18=67×18
Simplify the equation
More Steps

Evaluate
(−32x−9x(7−5x))×18
Apply the distributive property
−32x×18−9x(7−5x)×18
Simplify
−32x×18−x(7−5x)×2
Multiply the numbers
−576x−x(7−5x)×2
Multiply the terms
−576x−2x(7−5x)
Expand the expression
More Steps

Calculate
−2x(7−5x)
Apply the distributive property
−2x×7−(−2x×5x)
Multiply the numbers
−14x−(−2x×5x)
Multiply the terms
−14x−(−10x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−14x+10x2
−576x−14x+10x2
Subtract the terms
More Steps

Evaluate
−576x−14x
Collect like terms by calculating the sum or difference of their coefficients
(−576−14)x
Subtract the numbers
−590x
−590x+10x2
−590x+10x2=67×18
Simplify the equation
More Steps

Evaluate
67×18
Simplify
7×3
Multiply the numbers
21
−590x+10x2=21
Move the expression to the left side
−590x+10x2−21=0
Rewrite in standard form
10x2−590x−21=0
Substitute a=10,b=−590 and c=−21 into the quadratic formula x=2a−b±b2−4ac
x=2×10590±(−590)2−4×10(−21)
Simplify the expression
x=20590±(−590)2−4×10(−21)
Simplify the expression
More Steps

Evaluate
(−590)2−4×10(−21)
Multiply the numbers
More Steps

Multiply the terms
4×10(−21)
Rewrite the expression
−4×10×21
Multiply the terms
−40×21
Multiply the terms
−840
(−590)2−(−840)
Rewrite the expression
5902−(−840)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5902+840
x=20590±5902+840
Simplify the radical expression
More Steps

Evaluate
5902+840
Add the numbers
348940
Write the expression as a product where the root of one of the factors can be evaluated
4×87235
Write the number in exponential form with the base of 2
22×87235
The root of a product is equal to the product of the roots of each factor
22×87235
Reduce the index of the radical and exponent with 2
287235
x=20590±287235
Separate the equation into 2 possible cases
x=20590+287235x=20590−287235
Simplify the expression
More Steps

Evaluate
x=20590+287235
Divide the terms
More Steps

Evaluate
20590+287235
Rewrite the expression
202(295+87235)
Cancel out the common factor 2
10295+87235
x=10295+87235
x=10295+87235x=20590−287235
Simplify the expression
More Steps

Evaluate
x=20590−287235
Divide the terms
More Steps

Evaluate
20590−287235
Rewrite the expression
202(295−87235)
Cancel out the common factor 2
10295−87235
x=10295−87235
x=10295+87235x=10295−87235
Solution
x1=10295−87235,x2=10295+87235
Alternative Form
x1≈−0.035572,x2≈59.035572
Show Solution
