Question
Solve the system of equations
Solve using the substitution method
Solve using the elimination method
(x1,y1)=(1+6517+65,2−3+65)(x2,y2)=(1−6517−65,−23+65)
Evaluate
{2x−y=10−xy10−xy=3
Solve the equation for x
More Steps

Evaluate
2x−y=10−xy
Evaluate
2x−y=10−yx
Move the expression to the left side
2x−y+yx=10
Move the expression to the right side
2x+yx=10+y
Collect like terms by calculating the sum or difference of their coefficients
(2+y)x=10+y
Divide both sides
2+y(2+y)x=2+y10+y
Divide the numbers
x=2+y10+y
{x=2+y10+y10−xy=3
Substitute the given value of x into the equation 10−xy=3
10−2+y10+y×y=3
Multiply the terms
More Steps

Evaluate
10−2+y10+y×y
Multiply the terms
More Steps

Multiply the terms
2+y10+y×y
Multiply the terms
2+y(10+y)y
Multiply the terms
2+yy(10+y)
10−2+yy(10+y)
10−2+yy(10+y)=3
Move the constant to the right-hand side and change its sign
−2+yy(10+y)=3−10
Subtract the numbers
−2+yy(10+y)=−7
Rewrite the expression
2+y−y(10+y)=−7
Cross multiply
−y(10+y)=(2+y)(−7)
Simplify the equation
−y(10+y)=−7(2+y)
Evaluate
y(10+y)=7(2+y)
Calculate
More Steps

Evaluate
y(10+y)
Apply the distributive property
y×10+y×y
Use the commutative property to reorder the terms
10y+y×y
Multiply the terms
10y+y2
10y+y2=7(2+y)
Calculate
More Steps

Evaluate
7(2+y)
Apply the distributive property
7×2+7y
Multiply the numbers
14+7y
10y+y2=14+7y
Move the expression to the left side
10y+y2−(14+7y)=0
Calculate the sum or difference
More Steps

Add the terms
10y+y2−(14+7y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10y+y2−14−7y
Subtract the terms
More Steps

Evaluate
10y−7y
Collect like terms by calculating the sum or difference of their coefficients
(10−7)y
Subtract the numbers
3y
3y+y2−14
3y+y2−14=0
Rewrite in standard form
y2+3y−14=0
Substitute a=1,b=3 and c=−14 into the quadratic formula y=2a−b±b2−4ac
y=2−3±32−4(−14)
Simplify the expression
More Steps

Evaluate
32−4(−14)
Multiply the numbers
More Steps

Evaluate
4(−14)
Multiplying or dividing an odd number of negative terms equals a negative
−4×14
Multiply the numbers
−56
32−(−56)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+56
Evaluate the power
9+56
Add the numbers
65
y=2−3±65
Separate the equation into 2 possible cases
y=2−3+65y=2−3−65
Use b−a=−ba=−ba to rewrite the fraction
y=2−3+65y=−23+65
Evaluate the logic
y=2−3+65∪y=−23+65
Rearrange the terms
{x=2+y10+yy=2−3+65∪{x=2+y10+yy=−23+65
Calculate
More Steps

Evaluate
{x=2+y10+yy=2−3+65
Substitute the given value of y into the equation x=2+y10+y
x=2+2−3+6510+2−3+65
Calculate
x=1+6517+65
Calculate
{x=1+6517+65y=2−3+65
{x=1+6517+65y=2−3+65∪{x=2+y10+yy=−23+65
Calculate
More Steps

Evaluate
{x=2+y10+yy=−23+65
Substitute the given value of y into the equation x=2+y10+y
x=2−23+6510−23+65
Calculate
x=1−6517−65
Calculate
{x=1−6517−65y=−23+65
{x=1+6517+65y=2−3+65∪{x=1−6517−65y=−23+65
Check the solution
More Steps

Check the solution
{2×43+65−2−3+65=10−43+65×2−3+6510−43+65×2−3+65=3
Simplify
{3=33=3
Evaluate
true
{x=1+6517+65y=2−3+65∪{x=1−6517−65y=−23+65
Check the solution
More Steps

Check the solution
⎩⎨⎧2×43−65−(−23+65)=10−43−65×(−23+65)10−43−65×(−23+65)=3
Simplify
{3=33=3
Evaluate
true
{x=1+6517+65y=2−3+65∪{x=1−6517−65y=−23+65
Solution
(x1,y1)=(1+6517+65,2−3+65)(x2,y2)=(1−6517−65,−23+65)
Show Solution
