Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
y1=144−590,y2=144+590
Alternative Form
y1≈−1.44928,y2≈2.020708
Evaluate
2y(7y−4)=41
Expand the expression
More Steps

Evaluate
2y(7y−4)
Apply the distributive property
2y×7y−2y×4
Multiply the terms
More Steps

Evaluate
2y×7y
Multiply the numbers
14y×y
Multiply the terms
14y2
14y2−2y×4
Multiply the numbers
14y2−8y
14y2−8y=41
Move the expression to the left side
14y2−8y−41=0
Substitute a=14,b=−8 and c=−41 into the quadratic formula y=2a−b±b2−4ac
y=2×148±(−8)2−4×14(−41)
Simplify the expression
y=288±(−8)2−4×14(−41)
Simplify the expression
More Steps

Evaluate
(−8)2−4×14(−41)
Multiply
More Steps

Multiply the terms
4×14(−41)
Rewrite the expression
−4×14×41
Multiply the terms
−2296
(−8)2−(−2296)
Rewrite the expression
82−(−2296)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+2296
Evaluate the power
64+2296
Add the numbers
2360
y=288±2360
Simplify the radical expression
More Steps

Evaluate
2360
Write the expression as a product where the root of one of the factors can be evaluated
4×590
Write the number in exponential form with the base of 2
22×590
The root of a product is equal to the product of the roots of each factor
22×590
Reduce the index of the radical and exponent with 2
2590
y=288±2590
Separate the equation into 2 possible cases
y=288+2590y=288−2590
Simplify the expression
More Steps

Evaluate
y=288+2590
Divide the terms
More Steps

Evaluate
288+2590
Rewrite the expression
282(4+590)
Cancel out the common factor 2
144+590
y=144+590
y=144+590y=288−2590
Simplify the expression
More Steps

Evaluate
y=288−2590
Divide the terms
More Steps

Evaluate
288−2590
Rewrite the expression
282(4−590)
Cancel out the common factor 2
144−590
y=144−590
y=144+590y=144−590
Solution
y1=144−590,y2=144+590
Alternative Form
y1≈−1.44928,y2≈2.020708
Show Solution
