Question
Solve the equation
Solve for x
Solve for y
x=0x=1x=−1
Evaluate
2y2xy×1=x2×2y2xy
Simplify
y2xy×1=x2y2xy
Multiply the terms
More Steps

Evaluate
y2xy×1
Rewrite the expression
y2xy
Multiply the terms with the same base by adding their exponents
y2+1x
Add the numbers
y3x
y3x=x2y2xy
Multiply
More Steps

Evaluate
x2y2xy
Multiply the terms with the same base by adding their exponents
x2+1y2×y
Add the numbers
x3y2×y
Multiply the terms with the same base by adding their exponents
x3y2+1
Add the numbers
x3y3
y3x=x3y3
Rewrite the expression
y3x=y3x3
Add or subtract both sides
y3x−y3x3=0
Factor the expression
y3x(1−x2)=0
Divide both sides
x(1−x2)=0
Separate the equation into 2 possible cases
x=01−x2=0
Solution
More Steps

Evaluate
1−x2=0
Move the constant to the right-hand side and change its sign
−x2=0−1
Removing 0 doesn't change the value,so remove it from the expression
−x2=−1
Change the signs on both sides of the equation
x2=1
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±1
Simplify the expression
x=±1
Separate the equation into 2 possible cases
x=1x=−1
x=0x=1x=−1
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
2y2xy×1=x2×2y2xy
Simplify
y2xy×1=x2y2xy
Multiply the terms
More Steps

Evaluate
y2xy×1
Rewrite the expression
y2xy
Multiply the terms with the same base by adding their exponents
y2+1x
Add the numbers
y3x
y3x=x2y2xy
Multiply
More Steps

Evaluate
x2y2xy
Multiply the terms with the same base by adding their exponents
x2+1y2×y
Add the numbers
x3y2×y
Multiply the terms with the same base by adding their exponents
x3y2+1
Add the numbers
x3y3
y3x=x3y3
To test if the graph of y3x=x3y3 is symmetry with respect to the origin,substitute -x for x and -y for y
(−y)3(−x)=(−x)3(−y)3
Evaluate
More Steps

Evaluate
(−y)3(−x)
Rewrite the expression
−y3(−x)
Multiplying or dividing an even number of negative terms equals a positive
y3x
y3x=(−x)3(−y)3
Evaluate
More Steps

Evaluate
(−x)3(−y)3
Rewrite the expression
−x3(−y3)
Multiplying or dividing an even number of negative terms equals a positive
x3y3
y3x=x3y3
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=∣sec(θ)∣r=−∣sec(θ)∣
Evaluate
2y2xy×1=x2×2y2xy
Evaluate
More Steps

Evaluate
2y2xy×1
Rewrite the expression
2y2xy
Multiply the terms with the same base by adding their exponents
2y2+1x
Add the numbers
2y3x
2y3x=x2×2y2xy
Evaluate
More Steps

Evaluate
x2×2y2xy
Multiply the terms with the same base by adding their exponents
x2+1×2y2×y
Add the numbers
x3×2y2×y
Multiply the terms with the same base by adding their exponents
x3×2y2+1
Add the numbers
x3×2y3
Use the commutative property to reorder the terms
2x3y3
2y3x=2x3y3
Move the expression to the left side
2y3x−2x3y3=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
2(sin(θ)×r)3cos(θ)×r−2(cos(θ)×r)3(sin(θ)×r)3=0
Factor the expression
−2cos3(θ)sin3(θ)×r6+2sin3(θ)cos(θ)×r4=0
Factor the expression
r4(−2cos3(θ)sin3(θ)×r2+2sin3(θ)cos(θ))=0
When the product of factors equals 0,at least one factor is 0
r4=0−2cos3(θ)sin3(θ)×r2+2sin3(θ)cos(θ)=0
Evaluate
r=0−2cos3(θ)sin3(θ)×r2+2sin3(θ)cos(θ)=0
Solution
More Steps

Factor the expression
−2cos3(θ)sin3(θ)×r2+2sin3(θ)cos(θ)=0
Subtract the terms
−2cos3(θ)sin3(θ)×r2+2sin3(θ)cos(θ)−2sin3(θ)cos(θ)=0−2sin3(θ)cos(θ)
Evaluate
−2cos3(θ)sin3(θ)×r2=−2sin3(θ)cos(θ)
Divide the terms
r2=cos2(θ)1
Simplify the expression
r2=sec2(θ)
Evaluate the power
r=±sec2(θ)
Reduce the index of the radical and exponent with 2
r=±∣sec(θ)∣
Separate into possible cases
r=∣sec(θ)∣r=−∣sec(θ)∣
r=0r=∣sec(θ)∣r=−∣sec(θ)∣
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=3x−3x33yx2−y
Calculate
2y2xy1=x22y2xy
Simplify the expression
2y3x=2x3y3
Take the derivative of both sides
dxd(2y3x)=dxd(2x3y3)
Calculate the derivative
More Steps

Evaluate
dxd(2y3x)
Use differentiation rules
dxd(2x)×y3+2x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
2y3+2x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
2y3+6xy2dxdy
2y3+6xy2dxdy=dxd(2x3y3)
Calculate the derivative
More Steps

Evaluate
dxd(2x3y3)
Use differentiation rules
dxd(2x3)×y3+2x3×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(2x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x3)
Use dxdxn=nxn−1 to find derivative
2×3x2
Multiply the terms
6x2
6x2y3+2x3×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
6x2y3+6x3y2dxdy
2y3+6xy2dxdy=6x2y3+6x3y2dxdy
Move the expression to the left side
2y3+6xy2dxdy−6x3y2dxdy=6x2y3
Move the expression to the right side
6xy2dxdy−6x3y2dxdy=6x2y3−2y3
Collect like terms by calculating the sum or difference of their coefficients
(6xy2−6x3y2)dxdy=6x2y3−2y3
Divide both sides
6xy2−6x3y2(6xy2−6x3y2)dxdy=6xy2−6x3y26x2y3−2y3
Divide the numbers
dxdy=6xy2−6x3y26x2y3−2y3
Solution
More Steps

Evaluate
6xy2−6x3y26x2y3−2y3
Rewrite the expression
6xy2−6x3y22y2(3yx2−y)
Rewrite the expression
2y2(3x−3x3)2y2(3yx2−y)
Reduce the fraction
3x−3x33yx2−y
dxdy=3x−3x33yx2−y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9x2−18x4+9x618x4y−6x2y+4y
Calculate
2y2xy1=x22y2xy
Simplify the expression
2y3x=2x3y3
Take the derivative of both sides
dxd(2y3x)=dxd(2x3y3)
Calculate the derivative
More Steps

Evaluate
dxd(2y3x)
Use differentiation rules
dxd(2x)×y3+2x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
2y3+2x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
2y3+6xy2dxdy
2y3+6xy2dxdy=dxd(2x3y3)
Calculate the derivative
More Steps

Evaluate
dxd(2x3y3)
Use differentiation rules
dxd(2x3)×y3+2x3×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(2x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x3)
Use dxdxn=nxn−1 to find derivative
2×3x2
Multiply the terms
6x2
6x2y3+2x3×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
6x2y3+6x3y2dxdy
2y3+6xy2dxdy=6x2y3+6x3y2dxdy
Move the expression to the left side
2y3+6xy2dxdy−6x3y2dxdy=6x2y3
Move the expression to the right side
6xy2dxdy−6x3y2dxdy=6x2y3−2y3
Collect like terms by calculating the sum or difference of their coefficients
(6xy2−6x3y2)dxdy=6x2y3−2y3
Divide both sides
6xy2−6x3y2(6xy2−6x3y2)dxdy=6xy2−6x3y26x2y3−2y3
Divide the numbers
dxdy=6xy2−6x3y26x2y3−2y3
Divide the numbers
More Steps

Evaluate
6xy2−6x3y26x2y3−2y3
Rewrite the expression
6xy2−6x3y22y2(3yx2−y)
Rewrite the expression
2y2(3x−3x3)2y2(3yx2−y)
Reduce the fraction
3x−3x33yx2−y
dxdy=3x−3x33yx2−y
Take the derivative of both sides
dxd(dxdy)=dxd(3x−3x33yx2−y)
Calculate the derivative
dx2d2y=dxd(3x−3x33yx2−y)
Use differentiation rules
dx2d2y=(3x−3x3)2dxd(3yx2−y)×(3x−3x3)−(3yx2−y)×dxd(3x−3x3)
Calculate the derivative
More Steps

Evaluate
dxd(3yx2−y)
Use differentiation rules
dxd(3yx2)+dxd(−y)
Evaluate the derivative
6xy+3x2dxdy+dxd(−y)
Evaluate the derivative
6xy+3x2dxdy−dxdy
dx2d2y=(3x−3x3)2(6xy+3x2dxdy−dxdy)(3x−3x3)−(3yx2−y)×dxd(3x−3x3)
Calculate the derivative
More Steps

Evaluate
dxd(3x−3x3)
Use differentiation rules
dxd(3x)+dxd(−3x3)
Evaluate the derivative
3+dxd(−3x3)
Evaluate the derivative
3−9x2
dx2d2y=(3x−3x3)2(6xy+3x2dxdy−dxdy)(3x−3x3)−(3yx2−y)(3−9x2)
Calculate
More Steps

Evaluate
(6xy+3x2dxdy−dxdy)(3x−3x3)
Use the the distributive property to expand the expression
(6xy+3x2dxdy)(3x−3x3)−dxdy×(3x−3x3)
Multiply the terms
18x2y−18x4y+9x3dxdy−9x5dxdy−dxdy×(3x−3x3)
Multiply the terms
18x2y−18x4y+9x3dxdy−9x5dxdy−3xdxdy+3x3dxdy
Calculate
18x2y−18x4y+12x3dxdy−9x5dxdy−3xdxdy
dx2d2y=(3x−3x3)218x2y−18x4y+12x3dxdy−9x5dxdy−3xdxdy−(3yx2−y)(3−9x2)
Calculate
More Steps

Evaluate
(3yx2−y)(3−9x2)
Use the the distributive property to expand the expression
(3yx2−y)×3+(3yx2−y)(−9x2)
Multiply the terms
9yx2−3y+(3yx2−y)(−9x2)
Multiply the terms
9yx2−3y−27yx4+9yx2
Calculate
18yx2−3y−27yx4
dx2d2y=(3x−3x3)218x2y−18x4y+12x3dxdy−9x5dxdy−3xdxdy−(18yx2−3y−27yx4)
Calculate
More Steps

Calculate
18x2y−18x4y+12x3dxdy−9x5dxdy−3xdxdy−(18yx2−3y−27yx4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
18x2y−18x4y+12x3dxdy−9x5dxdy−3xdxdy−18yx2+3y+27yx4
Subtract the terms
0−18x4y+12x3dxdy−9x5dxdy−3xdxdy+3y+27yx4
Removing 0 doesn't change the value,so remove it from the expression
−18x4y+12x3dxdy−9x5dxdy−3xdxdy+3y+27yx4
Add the terms
9x4y+12x3dxdy−9x5dxdy−3xdxdy+3y
dx2d2y=(3x−3x3)29x4y+12x3dxdy−9x5dxdy−3xdxdy+3y
Calculate
dx2d2y=3(x−x3)23x4y+4x3dxdy−3x5dxdy−xdxdy+y
Use equation dxdy=3x−3x33yx2−y to substitute
dx2d2y=3(x−x3)23x4y+4x3×3x−3x33yx2−y−3x5×3x−3x33yx2−y−x×3x−3x33yx2−y+y
Solution
More Steps

Calculate
3(x−x3)23x4y+4x3×3x−3x33yx2−y−3x5×3x−3x33yx2−y−x×3x−3x33yx2−y+y
Multiply the terms
More Steps

Multiply the terms
4x3×3x−3x33yx2−y
Rewrite the expression
4x3×x(3−3x2)3yx2−y
Cancel out the common factor x
4x2×3−3x23yx2−y
Multiply the terms
3−3x24x2(3yx2−y)
3(x−x3)23x4y+3−3x24x2(3yx2−y)−3x5×3x−3x33yx2−y−x×3x−3x33yx2−y+y
Multiply the terms
3(x−x3)23x4y+3−3x24x2(3yx2−y)−1−x2x4(3yx2−y)−x×3x−3x33yx2−y+y
Multiply the terms
More Steps

Multiply the terms
−x×3x−3x33yx2−y
Rewrite the expression
−x×x(3−3x2)3yx2−y
Cancel out the common factor x
−1×3−3x23yx2−y
Multiply the terms
−3−3x23yx2−y
3(x−x3)23x4y+3−3x24x2(3yx2−y)−1−x2x4(3yx2−y)−3−3x23yx2−y+y
Calculate the sum or difference
More Steps

Evaluate
3x4y+3−3x24x2(3yx2−y)−1−x2x4(3yx2−y)−3−3x23yx2−y+y
Rewrite the fractions
3x4y+3−3x24x2(3yx2−y)+−1+x2x4(3yx2−y)−3−3x23yx2−y+y
Rewrite the fractions
3x4y+3−3x24x2(3yx2−y)+−1+x2x4(3yx2−y)+−3+3x23yx2−y+y
Factor the expression
3x4y+3−3x24x2(3yx2−y)+−1+x2x4(3yx2−y)+3(x2−1)3yx2−y+y
Reduce fractions to a common denominator
3−3x23x4y(3−3x2)+3−3x24x2(3yx2−y)+(−1+x2)(−3)x4(3yx2−y)(−3)+3(x2−1)(−1)(3yx2−y)(−1)+−3(−1)(−1)(x2−1)y(−3)(−1)(−1)(x2−1)
Use the commutative property to reorder the terms
3−3x23x4y(3−3x2)+3−3x24x2(3yx2−y)+−3(−1+x2)x4(3yx2−y)(−3)+3(x2−1)(−1)(3yx2−y)(−1)+−3(−1)(−1)(x2−1)y(−3)(−1)(−1)(x2−1)
Rewrite the expression
3−3x23x4y(3−3x2)+3−3x24x2(3yx2−y)+−3(−1+x2)x4(3yx2−y)(−3)+−3(x2−1)(3yx2−y)(−1)+−3(−1)(−1)(x2−1)y(−3)(−1)(−1)(x2−1)
Rewrite the expression
3−3x23x4y(3−3x2)+3−3x24x2(3yx2−y)+−3(−1+x2)x4(3yx2−y)(−3)+−3(x2−1)(3yx2−y)(−1)+−3(x2−1)y(−3)(−1)(−1)(x2−1)
Rewrite the expression
3−3x23x4y(3−3x2)+3−3x24x2(3yx2−y)+3−3x2x4(3yx2−y)(−3)+3−3x2(3yx2−y)(−1)+3−3x2y(−3)(−1)(−1)(x2−1)
Write all numerators above the common denominator
3−3x23x4y(3−3x2)+4x2(3yx2−y)+x4(3yx2−y)(−3)+(3yx2−y)(−1)+y(−3)(−1)(−1)(x2−1)
Multiply the terms
3−3x29x4y−9x6y+4x2(3yx2−y)+x4(3yx2−y)(−3)+(3yx2−y)(−1)+y(−3)(−1)(−1)(x2−1)
Multiply the terms
3−3x29x4y−9x6y+12yx4−4yx2+x4(3yx2−y)(−3)+(3yx2−y)(−1)+y(−3)(−1)(−1)(x2−1)
Multiply the terms
3−3x29x4y−9x6y+12yx4−4yx2−9x6y+3x4y+(3yx2−y)(−1)+y(−3)(−1)(−1)(x2−1)
Multiply the terms
3−3x29x4y−9x6y+12yx4−4yx2−9x6y+3x4y−3yx2+y+y(−3)(−1)(−1)(x2−1)
Multiply the terms
3−3x29x4y−9x6y+12yx4−4yx2−9x6y+3x4y−3yx2+y−3yx2+3y
Calculate the sum or difference
3−3x224x4y−18x6y−10yx2+4y
Factor the expression
3−3x2(x2−1)(−18x4y+6x2y−4y)
Factor the expression
−3(x2−1)(x2−1)(−18x4y+6x2y−4y)
Reduce the fraction
−3−18x4y+6x2y−4y
Calculate
318x4y−6x2y+4y
3(x−x3)2318x4y−6x2y+4y
Multiply by the reciprocal
318x4y−6x2y+4y×3(x−x3)21
Multiply the terms
3×3(x−x3)218x4y−6x2y+4y
Multiply the terms
9(x−x3)218x4y−6x2y+4y
Expand the expression
More Steps

Evaluate
9(x−x3)2
Expand the expression
9(x2−2x4+x6)
Apply the distributive property
9x2−9×2x4+9x6
Multiply the numbers
9x2−18x4+9x6
9x2−18x4+9x618x4y−6x2y+4y
dx2d2y=9x2−18x4+9x618x4y−6x2y+4y
Show Solution
