Question
Solve the equation
Solve for x
Solve for y
x=y55
Evaluate
2y5x=10
Divide both sides
2y52y5x=2y510
Divide the numbers
x=2y510
Solution
x=y55
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
2y5x=10
To test if the graph of 2y5x=10 is symmetry with respect to the origin,substitute -x for x and -y for y
2(−y)5(−x)=10
Evaluate
More Steps

Evaluate
2(−y)5(−x)
Any expression multiplied by 1 remains the same
−2(−y)5x
Multiply the terms
More Steps

Evaluate
2(−y)5
Rewrite the expression
2(−y5)
Multiply the numbers
−2y5
−(−2y5x)
Multiply the first two terms
2y5x
2y5x=10
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=65csc5(θ)sec(θ)r=−65csc5(θ)sec(θ)
Evaluate
2y5x=10
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
2(sin(θ)×r)5cos(θ)×r=10
Factor the expression
2sin5(θ)cos(θ)×r6=10
Divide the terms
r6=sin5(θ)cos(θ)5
Simplify the expression
r6=5csc5(θ)sec(θ)
Evaluate the power
r=±65csc5(θ)sec(θ)
Solution
r=65csc5(θ)sec(θ)r=−65csc5(θ)sec(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−5xy
Calculate
2y5x=10
Take the derivative of both sides
dxd(2y5x)=dxd(10)
Calculate the derivative
More Steps

Evaluate
dxd(2y5x)
Use differentiation rules
dxd(2x)×y5+2x×dxd(y5)
Evaluate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
2y5+2x×dxd(y5)
Evaluate the derivative
More Steps

Evaluate
dxd(y5)
Use differentiation rules
dyd(y5)×dxdy
Use dxdxn=nxn−1 to find derivative
5y4dxdy
2y5+10xy4dxdy
2y5+10xy4dxdy=dxd(10)
Calculate the derivative
2y5+10xy4dxdy=0
Move the expression to the right-hand side and change its sign
10xy4dxdy=0−2y5
Removing 0 doesn't change the value,so remove it from the expression
10xy4dxdy=−2y5
Divide both sides
10xy410xy4dxdy=10xy4−2y5
Divide the numbers
dxdy=10xy4−2y5
Solution
More Steps

Evaluate
10xy4−2y5
Cancel out the common factor 2
5xy4−y5
Reduce the fraction
More Steps

Evaluate
y4y5
Use the product rule aman=an−m to simplify the expression
y5−4
Subtract the terms
y1
Simplify
y
5x−y
Use b−a=−ba=−ba to rewrite the fraction
−5xy
dxdy=−5xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=25x26y
Calculate
2y5x=10
Take the derivative of both sides
dxd(2y5x)=dxd(10)
Calculate the derivative
More Steps

Evaluate
dxd(2y5x)
Use differentiation rules
dxd(2x)×y5+2x×dxd(y5)
Evaluate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
2y5+2x×dxd(y5)
Evaluate the derivative
More Steps

Evaluate
dxd(y5)
Use differentiation rules
dyd(y5)×dxdy
Use dxdxn=nxn−1 to find derivative
5y4dxdy
2y5+10xy4dxdy
2y5+10xy4dxdy=dxd(10)
Calculate the derivative
2y5+10xy4dxdy=0
Move the expression to the right-hand side and change its sign
10xy4dxdy=0−2y5
Removing 0 doesn't change the value,so remove it from the expression
10xy4dxdy=−2y5
Divide both sides
10xy410xy4dxdy=10xy4−2y5
Divide the numbers
dxdy=10xy4−2y5
Divide the numbers
More Steps

Evaluate
10xy4−2y5
Cancel out the common factor 2
5xy4−y5
Reduce the fraction
More Steps

Evaluate
y4y5
Use the product rule aman=an−m to simplify the expression
y5−4
Subtract the terms
y1
Simplify
y
5x−y
Use b−a=−ba=−ba to rewrite the fraction
−5xy
dxdy=−5xy
Take the derivative of both sides
dxd(dxdy)=dxd(−5xy)
Calculate the derivative
dx2d2y=dxd(−5xy)
Use differentiation rules
dx2d2y=−(5x)2dxd(y)×5x−y×dxd(5x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−(5x)2dxdy×5x−y×dxd(5x)
Calculate the derivative
More Steps

Evaluate
dxd(5x)
Simplify
5×dxd(x)
Rewrite the expression
5×1
Any expression multiplied by 1 remains the same
5
dx2d2y=−(5x)2dxdy×5x−y×5
Use the commutative property to reorder the terms
dx2d2y=−(5x)25dxdy×x−y×5
Use the commutative property to reorder the terms
dx2d2y=−(5x)25dxdy×x−5y
Use the commutative property to reorder the terms
dx2d2y=−(5x)25xdxdy−5y
Calculate
More Steps

Evaluate
(5x)2
Evaluate the power
52x2
Evaluate the power
25x2
dx2d2y=−25x25xdxdy−5y
Calculate
dx2d2y=−5x2xdxdy−y
Use equation dxdy=−5xy to substitute
dx2d2y=−5x2x(−5xy)−y
Solution
More Steps

Calculate
−5x2x(−5xy)−y
Multiply the terms
More Steps

Evaluate
x(−5xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×5xy
Cancel out the common factor x
−1×5y
Multiply the terms
−5y
−5x2−5y−y
Subtract the terms
More Steps

Simplify
−5y−y
Reduce fractions to a common denominator
−5y−5y×5
Write all numerators above the common denominator
5−y−y×5
Use the commutative property to reorder the terms
5−y−5y
Subtract the terms
5−6y
Use b−a=−ba=−ba to rewrite the fraction
−56y
−5x2−56y
Divide the terms
More Steps

Evaluate
5x2−56y
Multiply by the reciprocal
−56y×5x21
Multiply the terms
−5×5x26y
Multiply the terms
−25x26y
−(−25x26y)
Calculate
25x26y
dx2d2y=25x26y
Show Solution
