Question
Solve the differential equation
y=e4x2+C,C∈R
Evaluate
2y′=xy
Rewrite the expression
2dxdy=xy
Rewrite the expression
y1×2dxdy=xy×y1
Multiply the terms
y1×2dxdy=x
Multiply the terms
y2×dxdy=x
Transform the expression
y2×dy=xdx
Integrate the left-hand side of the equation with respect to y and the right-hand side of the equation with respect to x
∫y2dy=∫xdx
Calculate
More Steps

Evaluate
∫y2dy
Rewrite the expression
∫2×y1dy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫y1dy
Use the property of integral ∫x1dx=ln∣x∣
2ln(y)
Add the constant of integral C1
2ln(y)+C1,C1∈R
2ln(y)+C1=∫xdx,C1∈R
Calculate
More Steps

Evaluate
∫xdx
Use the property of integral ∫xndx=n+1xn+1
1+1x1+1
Add the numbers
1+1x2
Add the numbers
2x2
Add the constant of integral C2
2x2+C2,C2∈R
2ln(y)+C1=2x2+C2,C1∈R,C2∈R
Since the integral constants C1 and C2 are arbitrary constants, replace them with constant C
2ln(y)=2x2+C,C∈R
Solution
More Steps

Evaluate
2ln(y)=2x2+C
Divide both sides
22ln(y)=22x2+C
Divide the numbers
ln(y)=22x2+C
Divide the numbers
More Steps

Evaluate
22x2+C
Rewrite the expression
22x2+C
Multiply by the reciprocal
2x2+C×21
To multiply the fractions,multiply the numerators and denominators separately
2×2x2+C
Multiply the numbers
4x2+C
ln(y)=4x2+C
Convert the logarithm into exponential form using the fact that logax=b is equal to x=ab
y=e4x2+C
y=e4x2+C,C∈R
Show Solution
