Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
3(5x−7)×2(9x−11)=4(8x−7)−111
Multiply the terms
6(5x−7)(9x−11)=4(8x−7)−111
Expand the expression
More Steps

Evaluate
6(5x−7)(9x−11)
Multiply the terms
More Steps

Evaluate
6(5x−7)
Apply the distributive property
6×5x−6×7
Multiply the numbers
30x−6×7
Multiply the numbers
30x−42
(30x−42)(9x−11)
Apply the distributive property
30x×9x−30x×11−42×9x−(−42×11)
Multiply the terms
More Steps

Evaluate
30x×9x
Multiply the numbers
270x×x
Multiply the terms
270x2
270x2−30x×11−42×9x−(−42×11)
Multiply the numbers
270x2−330x−42×9x−(−42×11)
Multiply the numbers
270x2−330x−378x−(−42×11)
Multiply the numbers
270x2−330x−378x−(−462)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
270x2−330x−378x+462
Subtract the terms
More Steps

Evaluate
−330x−378x
Collect like terms by calculating the sum or difference of their coefficients
(−330−378)x
Subtract the numbers
−708x
270x2−708x+462
270x2−708x+462=4(8x−7)−111
Expand the expression
More Steps

Evaluate
4(8x−7)−111
Multiply the terms
More Steps

Evaluate
4(8x−7)
Apply the distributive property
4×8x−4×7
Multiply the numbers
32x−4×7
Multiply the numbers
32x−28
32x−28−111
Subtract the numbers
32x−139
270x2−708x+462=32x−139
Move the expression to the left side
270x2−740x+601=0
Substitute a=270,b=−740 and c=601 into the quadratic formula x=2a−b±b2−4ac
x=2×270740±(−740)2−4×270×601
Simplify the expression
x=540740±(−740)2−4×270×601
Simplify the expression
More Steps

Evaluate
(−740)2−4×270×601
Multiply the terms
More Steps

Multiply the terms
4×270×601
Multiply the terms
1080×601
Multiply the numbers
649080
(−740)2−649080
Calculate
7402−649080
x=540740±7402−649080
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=2737−27025370i,x2=2737+27025370i
Alternative Form
x1≈1.3˙70˙−0.589925i,x2≈1.3˙70˙+0.589925i
Evaluate
3(5x−7)×2(9x−11)=4(8x−7)−111
Multiply the terms
6(5x−7)(9x−11)=4(8x−7)−111
Expand the expression
More Steps

Evaluate
6(5x−7)(9x−11)
Multiply the terms
More Steps

Evaluate
6(5x−7)
Apply the distributive property
6×5x−6×7
Multiply the numbers
30x−6×7
Multiply the numbers
30x−42
(30x−42)(9x−11)
Apply the distributive property
30x×9x−30x×11−42×9x−(−42×11)
Multiply the terms
More Steps

Evaluate
30x×9x
Multiply the numbers
270x×x
Multiply the terms
270x2
270x2−30x×11−42×9x−(−42×11)
Multiply the numbers
270x2−330x−42×9x−(−42×11)
Multiply the numbers
270x2−330x−378x−(−42×11)
Multiply the numbers
270x2−330x−378x−(−462)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
270x2−330x−378x+462
Subtract the terms
More Steps

Evaluate
−330x−378x
Collect like terms by calculating the sum or difference of their coefficients
(−330−378)x
Subtract the numbers
−708x
270x2−708x+462
270x2−708x+462=4(8x−7)−111
Expand the expression
More Steps

Evaluate
4(8x−7)−111
Multiply the terms
More Steps

Evaluate
4(8x−7)
Apply the distributive property
4×8x−4×7
Multiply the numbers
32x−4×7
Multiply the numbers
32x−28
32x−28−111
Subtract the numbers
32x−139
270x2−708x+462=32x−139
Move the expression to the left side
270x2−740x+601=0
Substitute a=270,b=−740 and c=601 into the quadratic formula x=2a−b±b2−4ac
x=2×270740±(−740)2−4×270×601
Simplify the expression
x=540740±(−740)2−4×270×601
Simplify the expression
More Steps

Evaluate
(−740)2−4×270×601
Multiply the terms
More Steps

Multiply the terms
4×270×601
Multiply the terms
1080×601
Multiply the numbers
649080
(−740)2−649080
Calculate
7402−649080
x=540740±7402−649080
Simplify the radical expression
More Steps

Evaluate
7402−649080
Evaluate the power
−7402+649080×−1
Evaluate the power
−7402+649080×i
Evaluate the power
More Steps

Evaluate
−7402+649080
Add the numbers
101480
Write the expression as a product where the root of one of the factors can be evaluated
4×25370
Write the number in exponential form with the base of 2
22×25370
The root of a product is equal to the product of the roots of each factor
22×25370
Reduce the index of the radical and exponent with 2
225370
225370×i
x=540740±225370×i
Separate the equation into 2 possible cases
x=540740+225370×ix=540740−225370×i
Simplify the expression
More Steps

Evaluate
x=540740+225370×i
Divide the terms
More Steps

Evaluate
540740+225370×i
Rewrite the expression
5402(370+25370×i)
Cancel out the common factor 2
270370+25370×i
Simplify
2737+27025370i
x=2737+27025370i
x=2737+27025370ix=540740−225370×i
Simplify the expression
More Steps

Evaluate
x=540740−225370×i
Divide the terms
More Steps

Evaluate
540740−225370×i
Rewrite the expression
5402(370−25370×i)
Cancel out the common factor 2
270370−25370×i
Simplify
2737−27025370i
x=2737−27025370i
x=2737+27025370ix=2737−27025370i
Solution
x1=2737−27025370i,x2=2737+27025370i
Alternative Form
x1≈1.3˙70˙−0.589925i,x2≈1.3˙70˙+0.589925i
Show Solution
