Question
Solve the equation
(x,y)=(3,5)
Evaluate
3×[5yx4]+[−63−yx−4−7]=[91385]
Simplify
More Steps

Evaluate
3×[5yx4]+[−63−yx−4−7]
Multiply the terms
More Steps

Evaluate
3×[5yx4]
Multiply the terms
[3×53y3x3×4]
Evaluate
[153y3x3×4]
Evaluate
[153y3x12]
[153y3x12]+[−63−yx−4−7]
Evaluate
[15−63y+3−y3x+x−412−7]
Evaluate
[93y+3−y3x+x−412−7]
Evaluate
[93y+3−y4x−412−7]
Evaluate
[92y+34x−412−7]
Evaluate
[92y+34x−45]
[92y+34x−45]=[91385]
Calculate
⎩⎨⎧9=94x−4=82y+3=135=5
Calculate
⎩⎨⎧true4x−4=82y+3=135=5
Calculate
More Steps

Evaluate
4x−4=8
Move the constant to the right-hand side and change its sign
4x=8+4
Add the numbers
4x=12
Divide both sides
44x=412
Divide the numbers
x=412
Divide the numbers
More Steps

Evaluate
412
Reduce the numbers
13
Calculate
3
x=3
⎩⎨⎧truex=32y+3=135=5
Calculate
More Steps

Evaluate
2y+3=13
Move the constant to the right-hand side and change its sign
2y=13−3
Subtract the numbers
2y=10
Divide both sides
22y=210
Divide the numbers
y=210
Divide the numbers
More Steps

Evaluate
210
Reduce the numbers
15
Calculate
5
y=5
⎩⎨⎧truex=3y=55=5
Calculate
⎩⎨⎧truex=3y=5true
Find the intersection
{x=3y=5
Solution
(x,y)=(3,5)
Show Solution
