Question
Simplify the expression
2−3b4−b5
Evaluate
3−3b4−b4×b−1
Multiply the terms
More Steps

Evaluate
b4×b
Use the product rule an×am=an+m to simplify the expression
b4+1
Add the numbers
b5
3−3b4−b5−1
Solution
2−3b4−b5
Show Solution

Factor the expression
−(1+b)(2b3+b4−2b2+2b−2)
Evaluate
3−3b4−b4×b−1
Multiply the terms
More Steps

Evaluate
b4×b
Use the product rule an×am=an+m to simplify the expression
b4+1
Add the numbers
b5
3−3b4−b5−1
Subtract the numbers
2−3b4−b5
Calculate
−2b3−b4+2b2−2b+2−2b4−b5+2b3−2b2+2b
Rewrite the expression
−2b3−b4+2b2−2b+2−b×2b3−b×b4+b×2b2−b×2b+b×2
Factor out −1 from the expression
−(2b3+b4−2b2+2b−2)−b×2b3−b×b4+b×2b2−b×2b+b×2
Factor out −b from the expression
−(2b3+b4−2b2+2b−2)−b(2b3+b4−2b2+2b−2)
Factor out 2b3+b4−2b2+2b−2 from the expression
(−1−b)(2b3+b4−2b2+2b−2)
Solution
−(1+b)(2b3+b4−2b2+2b−2)
Show Solution

Find the roots
b1≈−2.974449,b2=−1,b3≈0.849024
Evaluate
3−3b4−b4×b−1
To find the roots of the expression,set the expression equal to 0
3−3b4−b4×b−1=0
Multiply the terms
More Steps

Evaluate
b4×b
Use the product rule an×am=an+m to simplify the expression
b4+1
Add the numbers
b5
3−3b4−b5−1=0
Subtract the numbers
2−3b4−b5=0
Factor the expression
(−1−b)(2b3+b4−2b2+2b−2)=0
Separate the equation into 2 possible cases
−1−b=02b3+b4−2b2+2b−2=0
Solve the equation
More Steps

Evaluate
−1−b=0
Move the constant to the right-hand side and change its sign
−b=0+1
Removing 0 doesn't change the value,so remove it from the expression
−b=1
Change the signs on both sides of the equation
b=−1
b=−12b3+b4−2b2+2b−2=0
Solve the equation
b=−1b≈0.849024b≈−2.974449
Solution
b1≈−2.974449,b2=−1,b3≈0.849024
Show Solution
