Question
Simplify the expression
4025−1500a−4a5
Evaluate
381×(51−12a)−143×(52×7a5)
Remove the parentheses
381×(51−12a)−143×52×7a5
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
381
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
83×8+1
Multiply the terms
824+1
Add the terms
825
825(51−12a)−143×52×7a5
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
143
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
44+3
Add the terms
47
825(51−12a)−47×52×7a5
Multiply the terms
More Steps

Evaluate
825(51−12a)
Apply the distributive property
825×51−825×12a
Multiply the numbers
More Steps

Evaluate
825×51
Reduce the numbers
85×1
Multiply the numbers
85
85−825×12a
Multiply the numbers
More Steps

Evaluate
825×12
Reduce the numbers
225×3
Multiply the numbers
225×3
Multiply the numbers
275
85−275a
85−275a−47×52×7a5
Multiply
More Steps

Multiply the terms
47×52×7a5
Multiply the terms
More Steps

Evaluate
47×52
Reduce the numbers
27×51
To multiply the fractions,multiply the numerators and denominators separately
2×57
Multiply the numbers
107
107×7a5
Cancel out the common factor 7
101a5
Multiply the terms
10a5
85−275a−10a5
Rewrite the expression
85−275a−10a5
Reduce fractions to a common denominator
8×55×5−2×4×575a×4×5−10×4a5×4
Multiply the numbers
405×5−2×4×575a×4×5−10×4a5×4
Multiply the terms
More Steps

Evaluate
2×4×5
Multiply the terms
8×5
Multiply the numbers
40
405×5−4075a×4×5−10×4a5×4
Multiply the numbers
405×5−4075a×4×5−40a5×4
Write all numerators above the common denominator
405×5−75a×4×5−a5×4
Multiply the numbers
4025−75a×4×5−a5×4
Multiply the terms
More Steps

Evaluate
75a×4×5
Multiply the terms
300a×5
Multiply the terms
1500a
4025−1500a−a5×4
Solution
4025−1500a−4a5
Show Solution
