Question
Solve the equation
x=66+log3(10)
Alternative Form
x≈1.349317
Evaluate
3log10(9)×(5x−5)=5
Divide both sides
3log10(9)3log10(9)×(5x−5)=3log10(9)5
Divide the numbers
5x−5=3log10(9)5
Move the constant to the right side
5x=3log10(9)5+5
Add the numbers
More Steps

Evaluate
3log10(9)5+5
Simplify
More Steps

Evaluate
log10(9)
Write the number in exponential form with the base of 3
log10(32)
Calculate
2log10(3)
3×2log10(3)5+5
Reduce fractions to a common denominator
3×2log10(3)5+3×2log10(3)5×3×2log10(3)
Multiply the terms
6log10(3)5+3×2log10(3)5×3×2log10(3)
Multiply the terms
6log10(3)5+6log10(3)5×3×2log10(3)
Write all numerators above the common denominator
6log10(3)5+5×3×2log10(3)
Multiply the terms
More Steps

Evaluate
5×3×2log10(3)
Multiply the terms
15×2log10(3)
Multiply the terms
30log10(3)
6log10(3)5+30log10(3)
Rewrite in terms of common logarithms
More Steps

Evaluate the logarithm
5+30log10(3)
Rewrite in terms of common logarithms
log10(105)+30log10(3)
Calculate
log10(105)+log10(330)
Use the logarithm product rule
log10(105×330)
Evaluate the logarithm
log10(72905)
6log10(3)log10(72905)
Rewrite in terms of common logarithms
log10(36)log10(72905)
Use the logarithm base change rule
log36(72905)
Simplify
65log3(7290)
5x=65log3(7290)
Divide both sides
55x=565log3(7290)
Divide the numbers
x=565log3(7290)
Divide the numbers
More Steps

Evaluate
565log3(7290)
Rewrite the expression
565log3(7290)
Multiply by the reciprocal
65log3(7290)×51
Reduce the numbers
6log3(7290)×1
Multiply the numbers
6log3(7290)
x=6log3(7290)
Solution
More Steps

Evaluate
log3(7290)
Use loga(x×y)=loga(x)+loga(y) to transform the expression
log3(729)+log3(10)
Simplify the expression
More Steps

Evaluate
log3(729)
Write the number in exponential form with the base of 3
log3(36)
Use logaan=n to simplify the expression
6
6+log3(10)
x=66+log3(10)
Alternative Form
x≈1.349317
Show Solution
