Question
Simplify the expression
21x−45
Evaluate
23(2x−5)×61
Multiply the terms
More Steps

Evaluate
23×61
Reduce the numbers
21×21
To multiply the fractions,multiply the numerators and denominators separately
2×21
Multiply the numbers
41
41(2x−5)
Apply the distributive property
41×2x−41×5
Multiply the numbers
More Steps

Evaluate
41×2
Reduce the numbers
21×1
Multiply the numbers
21
21x−41×5
Solution
21x−45
Show Solution

Find the roots
x=25
Alternative Form
x=2.5
Evaluate
23(2x−5)×61
To find the roots of the expression,set the expression equal to 0
23(2x−5)×61=0
Multiply the terms
More Steps

Multiply the terms
23(2x−5)×61
Multiply the terms
More Steps

Evaluate
23×61
Reduce the numbers
21×21
To multiply the fractions,multiply the numerators and denominators separately
2×21
Multiply the numbers
41
41(2x−5)
Apply the distributive property
41×2x−41×5
Multiply the numbers
More Steps

Evaluate
41×2
Reduce the numbers
21×1
Multiply the numbers
21
21x−41×5
Multiply the numbers
21x−45
21x−45=0
Move the constant to the right-hand side and change its sign
21x=0+45
Add the terms
21x=45
Multiply by the reciprocal
21x×2=45×2
Multiply
x=45×2
Solution
More Steps

Evaluate
45×2
Reduce the numbers
25×1
Multiply the numbers
25
x=25
Alternative Form
x=2.5
Show Solution
