Question
Simplify the expression
−3p5−415p4
Evaluate
23p4(−2p−25)
Apply the distributive property
23p4(−2p)−23p4×25
Multiply the terms
More Steps

Evaluate
23p4(−2p)
Multiply the numbers
More Steps

Evaluate
23(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−23×2
Reduce the numbers
−3×1
Simplify
−3
−3p4×p
Multiply the terms
More Steps

Evaluate
p4×p
Use the product rule an×am=an+m to simplify the expression
p4+1
Add the numbers
p5
−3p5
−3p5−23p4×25
Solution
More Steps

Evaluate
23×25
To multiply the fractions,multiply the numerators and denominators separately
2×23×5
Multiply the numbers
2×215
Multiply the numbers
415
−3p5−415p4
Show Solution

Factor the expression
−43p4(4p+5)
Evaluate
23p4(−2p−25)
Factor the expression
23p4(−21)(4p+5)
Solution
−43p4(4p+5)
Show Solution

Find the roots
p1=−45,p2=0
Alternative Form
p1=−1.25,p2=0
Evaluate
23p4(−2p−25)
To find the roots of the expression,set the expression equal to 0
23p4(−2p−25)=0
Elimination the left coefficient
p4(−2p−25)=0
Separate the equation into 2 possible cases
p4=0−2p−25=0
The only way a power can be 0 is when the base equals 0
p=0−2p−25=0
Solve the equation
More Steps

Evaluate
−2p−25=0
Move the constant to the right-hand side and change its sign
−2p=0+25
Add the terms
−2p=25
Change the signs on both sides of the equation
2p=−25
Multiply by the reciprocal
2p×21=−25×21
Multiply
p=−25×21
Multiply
More Steps

Evaluate
−25×21
To multiply the fractions,multiply the numerators and denominators separately
−2×25
Multiply the numbers
−45
p=−45
p=0p=−45
Solution
p1=−45,p2=0
Alternative Form
p1=−1.25,p2=0
Show Solution
