Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
43×21(x−34)=53x×45(x×32)
Remove the parentheses
43×21(x−34)=53x×45x×32
Multiply the terms
More Steps

Evaluate
43×21(x−34)
Multiply the terms
More Steps

Evaluate
43×21
To multiply the fractions,multiply the numerators and denominators separately
4×23
Multiply the numbers
83
83(x−34)
Apply the distributive property
83x−83×34
Multiply the numbers
More Steps

Evaluate
83×34
Reduce the numbers
81×4
Reduce the numbers
21×1
Multiply the numbers
21
83x−21
83x−21=53x×45x×32
Multiply
More Steps

Evaluate
53x×45x×32
Multiply the terms
More Steps

Evaluate
53×45×32
Reduce the fraction
3×41×32
Reduce the fraction
1×41×2
Any expression multiplied by 1 remains the same
41×2
Reduce the numbers
21×1
Multiply the numbers
21
21x×x
Multiply the terms
21x2
83x−21=21x2
Swap the sides
21x2=83x−21
Move the expression to the left side
21x2−83x+21=0
Multiply both sides
8(21x2−83x+21)=8×0
Calculate
4x2−3x+4=0
Substitute a=4,b=−3 and c=4 into the quadratic formula x=2a−b±b2−4ac
x=2×43±(−3)2−4×4×4
Simplify the expression
x=83±(−3)2−4×4×4
Simplify the expression
More Steps

Evaluate
(−3)2−4×4×4
Rewrite the expression in exponential form
(−3)2−43
Rewrite the expression
32−43
Evaluate the power
9−43
Evaluate the power
9−64
Subtract the numbers
−55
x=83±−55
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=83−855i,x2=83+855i
Alternative Form
x1≈0.375−0.927025i,x2≈0.375+0.927025i
Evaluate
43×21(x−34)=53x×45(x×32)
Remove the parentheses
43×21(x−34)=53x×45x×32
Multiply the terms
More Steps

Evaluate
43×21(x−34)
Multiply the terms
More Steps

Evaluate
43×21
To multiply the fractions,multiply the numerators and denominators separately
4×23
Multiply the numbers
83
83(x−34)
Apply the distributive property
83x−83×34
Multiply the numbers
More Steps

Evaluate
83×34
Reduce the numbers
81×4
Reduce the numbers
21×1
Multiply the numbers
21
83x−21
83x−21=53x×45x×32
Multiply
More Steps

Evaluate
53x×45x×32
Multiply the terms
More Steps

Evaluate
53×45×32
Reduce the fraction
3×41×32
Reduce the fraction
1×41×2
Any expression multiplied by 1 remains the same
41×2
Reduce the numbers
21×1
Multiply the numbers
21
21x×x
Multiply the terms
21x2
83x−21=21x2
Swap the sides
21x2=83x−21
Move the expression to the left side
21x2−83x+21=0
Multiply both sides
8(21x2−83x+21)=8×0
Calculate
4x2−3x+4=0
Substitute a=4,b=−3 and c=4 into the quadratic formula x=2a−b±b2−4ac
x=2×43±(−3)2−4×4×4
Simplify the expression
x=83±(−3)2−4×4×4
Simplify the expression
More Steps

Evaluate
(−3)2−4×4×4
Rewrite the expression in exponential form
(−3)2−43
Rewrite the expression
32−43
Evaluate the power
9−43
Evaluate the power
9−64
Subtract the numbers
−55
x=83±−55
Simplify the radical expression
More Steps

Evaluate
−55
Evaluate the power
55×−1
Evaluate the power
55×i
x=83±55×i
Separate the equation into 2 possible cases
x=83+55×ix=83−55×i
Simplify the expression
x=83+855ix=83−55×i
Simplify the expression
x=83+855ix=83−855i
Solution
x1=83−855i,x2=83+855i
Alternative Form
x1≈0.375−0.927025i,x2≈0.375+0.927025i
Show Solution
