Question
Simplify the expression
43−643x2
Evaluate
43−x(21−85)(8−3x)
Remove the parentheses
43−x(21−85)×8−3x
Subtract the numbers
More Steps

Simplify
21−85
Reduce fractions to a common denominator
2×44−85
Multiply the numbers
84−85
Write all numerators above the common denominator
84−5
Subtract the numbers
8−1
Use b−a=−ba=−ba to rewrite the fraction
−81
43−x(−81)×8−3x
Use b−a=−ba=−ba to rewrite the fraction
43−x(−81)(−83)x
Solution
More Steps

Multiply the terms
x(−81)(−83)x
Rewrite the expression
x×81×83x
Multiply the terms
x2×81×83
Multiply the terms
More Steps

Evaluate
81×83
To multiply the fractions,multiply the numerators and denominators separately
8×83
Multiply the numbers
643
x2×643
Use the commutative property to reorder the terms
643x2
43−643x2
Show Solution

Factor the expression
643(4−x)(4+x)
Evaluate
43−x(21−85)(8−3x)
Evaluate
More Steps

Evaluate
x(21−85)(8−3x)
Remove the parentheses
x(21−85)×8−3x
Subtract the numbers
More Steps

Simplify
21−85
Reduce fractions to a common denominator
2×44−85
Multiply the numbers
84−85
Write all numerators above the common denominator
84−5
Subtract the numbers
8−1
Use b−a=−ba=−ba to rewrite the fraction
−81
x(−81)×8−3x
Use b−a=−ba=−ba to rewrite the fraction
x(−81)(−83)x
Rewrite the expression
x×81×83x
Multiply the terms
x2×81×83
Multiply the terms
More Steps

Evaluate
81×83
To multiply the fractions,multiply the numerators and denominators separately
8×83
Multiply the numbers
643
x2×643
Use the commutative property to reorder the terms
643x2
43−643x2
Factor out 643 from the expression
643(16−x2)
Solution
More Steps

Evaluate
16−x2
Rewrite the expression in exponential form
42−x2
Use a2−b2=(a−b)(a+b) to factor the expression
(4−x)(4+x)
643(4−x)(4+x)
Show Solution

Find the roots
x1=−4,x2=4
Evaluate
43−x(21−85)(8−3x)
To find the roots of the expression,set the expression equal to 0
43−x(21−85)(8−3x)=0
Subtract the numbers
More Steps

Simplify
21−85
Reduce fractions to a common denominator
2×44−85
Multiply the numbers
84−85
Write all numerators above the common denominator
84−5
Subtract the numbers
8−1
Use b−a=−ba=−ba to rewrite the fraction
−81
43−x(−81)(8−3x)=0
Use b−a=−ba=−ba to rewrite the fraction
43−x(−81)(−83x)=0
Multiply
More Steps

Multiply the terms
x(−81)(−83x)
Rewrite the expression
x×81×83x
Multiply the terms
x2×81×83
Multiply the terms
More Steps

Evaluate
81×83
To multiply the fractions,multiply the numerators and denominators separately
8×83
Multiply the numbers
643
x2×643
Use the commutative property to reorder the terms
643x2
43−643x2=0
Move the constant to the right-hand side and change its sign
−643x2=0−43
Removing 0 doesn't change the value,so remove it from the expression
−643x2=−43
Change the signs on both sides of the equation
643x2=43
Multiply by the reciprocal
643x2×364=43×364
Multiply
x2=43×364
Multiply
More Steps

Evaluate
43×364
Reduce the numbers
41×64
Reduce the numbers
1×16
Simplify
16
x2=16
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±16
Simplify the expression
More Steps

Evaluate
16
Write the number in exponential form with the base of 4
42
Reduce the index of the radical and exponent with 2
4
x=±4
Separate the equation into 2 possible cases
x=4x=−4
Solution
x1=−4,x2=4
Show Solution
