Question
Solve the equation
x=115
Alternative Form
x=0.4˙5˙
Evaluate
43(7x−1)−(2x−1−2x)=x+23
Simplify
More Steps

Evaluate
43(7x−1)−(2x−1−2x)
Multiply the terms
More Steps

Evaluate
43(7x−1)
Apply the distributive property
43×7x−43×1
Multiply the numbers
421x−43×1
Any expression multiplied by 1 remains the same
421x−43
421x−43−(2x−1−2x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
421x−43−2x+1+2x
Subtract the terms
More Steps

Evaluate
421x−2x
Collect like terms by calculating the sum or difference of their coefficients
(421−2)x
Subtract the numbers
413x
413x−43+1+2x
Add the numbers
More Steps

Evaluate
−43+1
Reduce fractions to a common denominator
−43+44
Write all numerators above the common denominator
4−3+4
Add the numbers
41
413x+41+2x
413x+41+2x=x+23
Multiply both sides of the equation by LCD
(413x+41+2x)×4=(x+23)×4
Simplify the equation
More Steps

Evaluate
(413x+41+2x)×4
Apply the distributive property
413x×4+41×4+2x×4
Simplify
13x+1+x×2
Use the commutative property to reorder the terms
13x+1+2x
Add the terms
More Steps

Evaluate
13x+2x
Collect like terms by calculating the sum or difference of their coefficients
(13+2)x
Add the numbers
15x
15x+1
15x+1=(x+23)×4
Simplify the equation
More Steps

Evaluate
(x+23)×4
Apply the distributive property
x×4+23×4
Simplify
x×4+3×2
Use the commutative property to reorder the terms
4x+3×2
Multiply the numbers
4x+6
15x+1=4x+6
Move the expression to the left side
15x+1−4x=6
Move the expression to the right side
15x−4x=6−1
Add and subtract
More Steps

Evaluate
15x−4x
Collect like terms by calculating the sum or difference of their coefficients
(15−4)x
Subtract the numbers
11x
11x=6−1
Add and subtract
11x=5
Divide both sides
1111x=115
Solution
x=115
Alternative Form
x=0.4˙5˙
Show Solution

Rewrite the equation
11x=5
Evaluate
43(7x−1)−(2x−1−2x)=x+23
Evaluate
More Steps

Evaluate
43(7x−1)−(2x−1−2x)
Subtract the terms
More Steps

Evaluate
2x−1−2x
Reduce fractions to a common denominator
22x×2−22−2x
Write all numerators above the common denominator
22x×2−2−x
Multiply the terms
24x−2−x
Subtract the terms
23x−2
43(7x−1)−23x−2
Multiply the terms
More Steps

Evaluate
43(7x−1)
Apply the distributive property
43×7x−43×1
Multiply the numbers
421x−43×1
Any expression multiplied by 1 remains the same
421x−43
421x−43−23x−2
421x−43−23x−2=x+23
Rewrite the expression
More Steps

Evaluate
−23x−2
Use b−a=−ba=−ba to rewrite the fraction
2−3x+2
Reduce the fraction
−23x+1
421x−43−23x+1=x+23
Multiply both sides of the equation by LCD
15x+1=4x+6
Move the variable to the left side
11x+1=6
Solution
11x=5
Show Solution
