Question
Solve the equation
Solve for x
Solve for b
x=1+1+4bx=1−1+4b
Evaluate
43x2−23x×1=(b×1)×3
Remove the parentheses
43x2−23x×1=b×1×3
Multiply the terms
43x2−23x=b×1×3
Multiply the terms
More Steps

Evaluate
b×1×3
Rewrite the expression
b×3
Use the commutative property to reorder the terms
3b
43x2−23x=3b
Move the expression to the left side
43x2−23x−3b=0
Multiply both sides
4(43x2−23x−3b)=4×0
Calculate
3x2−6x−12b=0
Substitute a=3,b=−6 and c=−12b into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3(−12b)
Simplify the expression
x=66±(−6)2−4×3(−12b)
Simplify the expression
More Steps

Evaluate
(−6)2−4×3(−12b)
Multiply
More Steps

Multiply the terms
4×3(−12b)
Rewrite the expression
−4×3×12b
Multiply the terms
−144b
(−6)2−(−144b)
Rewrite the expression
62−(−144b)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62+144b
Evaluate the power
36+144b
x=66±36+144b
Simplify the radical expression
More Steps

Evaluate
36+144b
Factor the expression
36(1+4b)
The root of a product is equal to the product of the roots of each factor
36×1+4b
Evaluate the root
More Steps

Evaluate
36
Write the number in exponential form with the base of 6
62
Reduce the index of the radical and exponent with 2
6
61+4b
x=66±61+4b
Separate the equation into 2 possible cases
x=66+61+4bx=66−61+4b
Simplify the expression
More Steps

Evaluate
x=66+61+4b
Divide the terms
More Steps

Evaluate
66+61+4b
Rewrite the expression
66(1+1+4b)
Reduce the fraction
1+1+4b
x=1+1+4b
x=1+1+4bx=66−61+4b
Solution
More Steps

Evaluate
x=66−61+4b
Divide the terms
More Steps

Evaluate
66−61+4b
Rewrite the expression
66(1−1+4b)
Reduce the fraction
1−1+4b
x=1−1+4b
x=1+1+4bx=1−1+4b
Show Solution
