Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=52−25,x2=52+25
Alternative Form
x1≈−0.494427,x2≈1.294427
Evaluate
53(5x−2)2−12=0
Expand the expression
More Steps

Evaluate
53(5x−2)2−12
Expand the expression
More Steps

Evaluate
53(5x−2)2
Expand the expression
53(25x2−20x+4)
Apply the distributive property
53×25x2−53×20x+53×4
Multiply the numbers
15x2−53×20x+53×4
Multiply the numbers
15x2−12x+53×4
Multiply the numbers
15x2−12x+512
15x2−12x+512−12
Subtract the numbers
More Steps

Evaluate
512−12
Reduce fractions to a common denominator
512−512×5
Write all numerators above the common denominator
512−12×5
Multiply the numbers
512−60
Subtract the numbers
5−48
Use b−a=−ba=−ba to rewrite the fraction
−548
15x2−12x−548
15x2−12x−548=0
Multiply both sides
5(15x2−12x−548)=5×0
Calculate
75x2−60x−48=0
Substitute a=75,b=−60 and c=−48 into the quadratic formula x=2a−b±b2−4ac
x=2×7560±(−60)2−4×75(−48)
Simplify the expression
x=15060±(−60)2−4×75(−48)
Simplify the expression
More Steps

Evaluate
(−60)2−4×75(−48)
Multiply
More Steps

Multiply the terms
4×75(−48)
Rewrite the expression
−4×75×48
Multiply the terms
−14400
(−60)2−(−14400)
Rewrite the expression
602−(−14400)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
602+14400
Evaluate the power
3600+14400
Add the numbers
18000
x=15060±18000
Simplify the radical expression
More Steps

Evaluate
18000
Write the expression as a product where the root of one of the factors can be evaluated
3600×5
Write the number in exponential form with the base of 60
602×5
The root of a product is equal to the product of the roots of each factor
602×5
Reduce the index of the radical and exponent with 2
605
x=15060±605
Separate the equation into 2 possible cases
x=15060+605x=15060−605
Simplify the expression
More Steps

Evaluate
x=15060+605
Divide the terms
More Steps

Evaluate
15060+605
Rewrite the expression
15030(2+25)
Cancel out the common factor 30
52+25
x=52+25
x=52+25x=15060−605
Simplify the expression
More Steps

Evaluate
x=15060−605
Divide the terms
More Steps

Evaluate
15060−605
Rewrite the expression
15030(2−25)
Cancel out the common factor 30
52−25
x=52−25
x=52+25x=52−25
Solution
x1=52−25,x2=52+25
Alternative Form
x1≈−0.494427,x2≈1.294427
Show Solution
