Question
Simplify the expression
20b12b−35
Evaluate
53−4b7
Reduce fractions to a common denominator
5×4b3×4b−4b×57×5
Multiply the numbers
20b3×4b−4b×57×5
Multiply the numbers
20b3×4b−20b7×5
Write all numerators above the common denominator
20b3×4b−7×5
Multiply the terms
20b12b−7×5
Solution
20b12b−35
Show Solution

Find the excluded values
b=0
Evaluate
53−4b7
To find the excluded values,set the denominators equal to 0
4b=0
Solution
b=0
Show Solution

Find the roots
b=1235
Alternative Form
b=2.916˙
Evaluate
53−4b7
To find the roots of the expression,set the expression equal to 0
53−4b7=0
Find the domain
53−4b7=0,b=0
Calculate
53−4b7=0
Subtract the terms
More Steps

Simplify
53−4b7
Reduce fractions to a common denominator
5×4b3×4b−4b×57×5
Multiply the numbers
20b3×4b−4b×57×5
Multiply the numbers
20b3×4b−20b7×5
Write all numerators above the common denominator
20b3×4b−7×5
Multiply the terms
20b12b−7×5
Multiply the numbers
20b12b−35
20b12b−35=0
Cross multiply
12b−35=20b×0
Simplify the equation
12b−35=0
Move the constant to the right side
12b=0+35
Removing 0 doesn't change the value,so remove it from the expression
12b=35
Divide both sides
1212b=1235
Divide the numbers
b=1235
Check if the solution is in the defined range
b=1235,b=0
Solution
b=1235
Alternative Form
b=2.916˙
Show Solution
