Question
Solve the equation
t1=21,t2≈1.337944
Alternative Form
t1=0.5,t2≈1.337944
Evaluate
3(32(2t−1))×2−2(2t−1)(32(2t−1))t2=0
Remove the parentheses
3×32(2t−1)×2−2(2t−1)×32(2t−1)t2=0
Simplify
More Steps

Evaluate
3×32(2t−1)×2−2(2t−1)×32(2t−1)t2
Multiply the terms
192(2t−1)−2(2t−1)×32(2t−1)t2
Multiply the terms
More Steps

Multiply the terms
2(2t−1)×32(2t−1)t2
Multiply the terms
64(2t−1)(2t−1)t2
Multiply the terms
64t2(2t−1)(2t−1)
Multiply the terms
64t2(2t−1)2
192(2t−1)−64t2(2t−1)2
192(2t−1)−64t2(2t−1)2=0
Calculate
More Steps

Evaluate
192(2t−1)−64t2(2t−1)2
Expand the expression
More Steps

Calculate
192(2t−1)
Apply the distributive property
192×2t−192×1
Multiply the numbers
384t−192×1
Any expression multiplied by 1 remains the same
384t−192
384t−192−64t2(2t−1)2
Expand the expression
More Steps

Calculate
−64t2(2t−1)2
Simplify
−64t2(4t2−4t+1)
Apply the distributive property
−64t2×4t2−(−64t2×4t)−64t2×1
Multiply the terms
−256t4−(−64t2×4t)−64t2×1
Multiply the terms
−256t4−(−256t3)−64t2×1
Any expression multiplied by 1 remains the same
−256t4−(−256t3)−64t2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−256t4+256t3−64t2
384t−192−256t4+256t3−64t2
384t−192−256t4+256t3−64t2=0
Factor the expression
−64(1−2t)(3−2t3+t2)=0
Divide both sides
(1−2t)(3−2t3+t2)=0
Separate the equation into 2 possible cases
1−2t=03−2t3+t2=0
Solve the equation
More Steps

Evaluate
1−2t=0
Move the constant to the right-hand side and change its sign
−2t=0−1
Removing 0 doesn't change the value,so remove it from the expression
−2t=−1
Change the signs on both sides of the equation
2t=1
Divide both sides
22t=21
Divide the numbers
t=21
t=213−2t3+t2=0
Solve the equation
t=21t≈1.337944
Solution
t1=21,t2≈1.337944
Alternative Form
t1=0.5,t2≈1.337944
Show Solution
