Question
Simplify the expression
−4−10x−6x2
Evaluate
3(2+3x)−(5+2x)(2+3x)
Rewrite the expression
3(2+3x)+(−5−2x)(2+3x)
Expand the expression
More Steps

Calculate
3(2+3x)
Apply the distributive property
3×2+3×3x
Multiply the numbers
6+3×3x
Multiply the numbers
6+9x
6+9x+(−5−2x)(2+3x)
Expand the expression
More Steps

Calculate
(−5−2x)(2+3x)
Apply the distributive property
−5×2−5×3x−2x×2−2x×3x
Multiply the numbers
−10−5×3x−2x×2−2x×3x
Multiply the numbers
−10−15x−2x×2−2x×3x
Multiply the numbers
−10−15x−4x−2x×3x
Multiply the terms
More Steps

Evaluate
−2x×3x
Multiply the numbers
−6x×x
Multiply the terms
−6x2
−10−15x−4x−6x2
Subtract the terms
More Steps

Evaluate
−15x−4x
Collect like terms by calculating the sum or difference of their coefficients
(−15−4)x
Subtract the numbers
−19x
−10−19x−6x2
6+9x−10−19x−6x2
Subtract the numbers
−4+9x−19x−6x2
Solution
More Steps

Evaluate
9x−19x
Collect like terms by calculating the sum or difference of their coefficients
(9−19)x
Subtract the numbers
−10x
−4−10x−6x2
Show Solution

Factor the expression
−2(1+x)(2+3x)
Evaluate
3(2+3x)−(5+2x)(2+3x)
Rewrite the expression
3(2+3x)+(−5−2x)(2+3x)
Factor out 2+3x from the expression
(3−5−2x)(2+3x)
Solution
More Steps

Evaluate
3−5−2x
Subtract the numbers
−2−2x
Factor the expression
−2(1+x)
−2(1+x)(2+3x)
Show Solution

Find the roots
x1=−1,x2=−32
Alternative Form
x1=−1,x2=−0.6˙
Evaluate
3(2+3x)−(5+2x)(2+3x)
To find the roots of the expression,set the expression equal to 0
3(2+3x)−(5+2x)(2+3x)=0
Rewrite the expression
3(2+3x)+(−5−2x)(2+3x)=0
Calculate
More Steps

Evaluate
3(2+3x)+(−5−2x)(2+3x)
Expand the expression
More Steps

Calculate
3(2+3x)
Apply the distributive property
3×2+3×3x
Multiply the numbers
6+3×3x
Multiply the numbers
6+9x
6+9x+(−5−2x)(2+3x)
Expand the expression
More Steps

Calculate
(−5−2x)(2+3x)
Apply the distributive property
−5×2−5×3x−2x×2−2x×3x
Multiply the numbers
−10−5×3x−2x×2−2x×3x
Multiply the numbers
−10−15x−2x×2−2x×3x
Multiply the numbers
−10−15x−4x−2x×3x
Multiply the terms
−10−15x−4x−6x2
Subtract the terms
−10−19x−6x2
6+9x−10−19x−6x2
Subtract the numbers
−4+9x−19x−6x2
Subtract the terms
More Steps

Evaluate
9x−19x
Collect like terms by calculating the sum or difference of their coefficients
(9−19)x
Subtract the numbers
−10x
−4−10x−6x2
−4−10x−6x2=0
Factor the expression
More Steps

Evaluate
−4−10x−6x2
Rewrite the expression
−2×2−2×5x−2×3x2
Factor out −2 from the expression
−2(2+5x+3x2)
Factor the expression
More Steps

Evaluate
2+5x+3x2
Rewrite the expression
2+(3+2)x+3x2
Calculate
2+3x+2x+3x2
Rewrite the expression
2+3x+x×2+x×3x
Factor out x from the expression
2+3x+x(2+3x)
Factor out 2+3x from the expression
(1+x)(2+3x)
−2(1+x)(2+3x)
−2(1+x)(2+3x)=0
Divide the terms
(1+x)(2+3x)=0
When the product of factors equals 0,at least one factor is 0
1+x=02+3x=0
Solve the equation for x
More Steps

Evaluate
1+x=0
Move the constant to the right-hand side and change its sign
x=0−1
Removing 0 doesn't change the value,so remove it from the expression
x=−1
x=−12+3x=0
Solve the equation for x
More Steps

Evaluate
2+3x=0
Move the constant to the right-hand side and change its sign
3x=0−2
Removing 0 doesn't change the value,so remove it from the expression
3x=−2
Divide both sides
33x=3−2
Divide the numbers
x=3−2
Use b−a=−ba=−ba to rewrite the fraction
x=−32
x=−1x=−32
Solution
x1=−1,x2=−32
Alternative Form
x1=−1,x2=−0.6˙
Show Solution
