Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=30−103,x2=30+103
Alternative Form
x1≈12.679492,x2≈47.320508
Evaluate
3(20−x)2=x2
Expand the expression
More Steps

Evaluate
3(20−x)2
Expand the expression
More Steps

Evaluate
(20−x)2
Use (a−b)2=a2−2ab+b2 to expand the expression
202−2×20x+x2
Calculate
400−40x+x2
3(400−40x+x2)
Apply the distributive property
3×400−3×40x+3x2
Multiply the numbers
1200−3×40x+3x2
Multiply the numbers
1200−120x+3x2
1200−120x+3x2=x2
Move the expression to the left side
1200−120x+2x2=0
Rewrite in standard form
2x2−120x+1200=0
Substitute a=2,b=−120 and c=1200 into the quadratic formula x=2a−b±b2−4ac
x=2×2120±(−120)2−4×2×1200
Simplify the expression
x=4120±(−120)2−4×2×1200
Simplify the expression
More Steps

Evaluate
(−120)2−4×2×1200
Multiply the terms
More Steps

Multiply the terms
4×2×1200
Multiply the terms
8×1200
Multiply the numbers
9600
(−120)2−9600
Rewrite the expression
1202−9600
Evaluate the power
14400−9600
Subtract the numbers
4800
x=4120±4800
Simplify the radical expression
More Steps

Evaluate
4800
Write the expression as a product where the root of one of the factors can be evaluated
1600×3
Write the number in exponential form with the base of 40
402×3
The root of a product is equal to the product of the roots of each factor
402×3
Reduce the index of the radical and exponent with 2
403
x=4120±403
Separate the equation into 2 possible cases
x=4120+403x=4120−403
Simplify the expression
More Steps

Evaluate
x=4120+403
Divide the terms
More Steps

Evaluate
4120+403
Rewrite the expression
44(30+103)
Reduce the fraction
30+103
x=30+103
x=30+103x=4120−403
Simplify the expression
More Steps

Evaluate
x=4120−403
Divide the terms
More Steps

Evaluate
4120−403
Rewrite the expression
44(30−103)
Reduce the fraction
30−103
x=30−103
x=30+103x=30−103
Solution
x1=30−103,x2=30+103
Alternative Form
x1≈12.679492,x2≈47.320508
Show Solution
