Question
Simplify the expression
42x2−105x
Evaluate
3(2x−5)×7(x×1)
Remove the parentheses
3(2x−5)×7x×1
Rewrite the expression
3(2x−5)×7x
Multiply the terms
21(2x−5)x
Multiply the terms
21x(2x−5)
Apply the distributive property
21x×2x−21x×5
Multiply the terms
More Steps

Evaluate
21x×2x
Multiply the numbers
42x×x
Multiply the terms
42x2
42x2−21x×5
Solution
42x2−105x
Show Solution

Find the roots
x1=0,x2=25
Alternative Form
x1=0,x2=2.5
Evaluate
3(2x−5)×7(x×1)
To find the roots of the expression,set the expression equal to 0
3(2x−5)×7(x×1)=0
Any expression multiplied by 1 remains the same
3(2x−5)×7x=0
Multiply
More Steps

Multiply the terms
3(2x−5)×7x
Multiply the terms
21(2x−5)x
Multiply the terms
21x(2x−5)
21x(2x−5)=0
Elimination the left coefficient
x(2x−5)=0
Separate the equation into 2 possible cases
x=02x−5=0
Solve the equation
More Steps

Evaluate
2x−5=0
Move the constant to the right-hand side and change its sign
2x=0+5
Removing 0 doesn't change the value,so remove it from the expression
2x=5
Divide both sides
22x=25
Divide the numbers
x=25
x=0x=25
Solution
x1=0,x2=25
Alternative Form
x1=0,x2=2.5
Show Solution
