Question
Simplify the expression
24x2−4x+24
Evaluate
3(2x2×4)−4(x−6)
Remove the parentheses
3×2x2×4−4(x−6)
Multiply the terms
More Steps

Multiply the terms
3×2x2×4
Multiply the terms
More Steps

Evaluate
3×2×4
Multiply the terms
6×4
Multiply the numbers
24
24x2
24x2−4(x−6)
Solution
More Steps

Evaluate
−4(x−6)
Apply the distributive property
−4x−(−4×6)
Multiply the numbers
−4x−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x+24
24x2−4x+24
Show Solution

Factor the expression
4(6x2−x+6)
Evaluate
3(2x2×4)−4(x−6)
Remove the parentheses
3×2x2×4−4(x−6)
Multiply the terms
3×8x2−4(x−6)
Multiply the numbers
More Steps

Evaluate
3×8
Multiply the numbers
24
Evaluate
24x2
24x2−4(x−6)
Simplify
More Steps

Evaluate
−4(x−6)
Apply the distributive property
−4x−4(−6)
Multiply the terms
More Steps

Evaluate
−4(−6)
Multiplying or dividing an even number of negative terms equals a positive
4×6
Multiply the numbers
24
−4x+24
24x2−4x+24
Solution
4(6x2−x+6)
Show Solution

Find the roots
x1=121−12143i,x2=121+12143i
Alternative Form
x1≈0.083˙−0.996522i,x2≈0.083˙+0.996522i
Evaluate
3(2x2×4)−4(x−6)
To find the roots of the expression,set the expression equal to 0
3(2x2×4)−4(x−6)=0
Multiply the terms
3×8x2−4(x−6)=0
Multiply the numbers
24x2−4(x−6)=0
Calculate
More Steps

Evaluate
−4(x−6)
Apply the distributive property
−4x−(−4×6)
Multiply the numbers
−4x−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x+24
24x2−4x+24=0
Substitute a=24,b=−4 and c=24 into the quadratic formula x=2a−b±b2−4ac
x=2×244±(−4)2−4×24×24
Simplify the expression
x=484±(−4)2−4×24×24
Simplify the expression
More Steps

Evaluate
(−4)2−4×24×24
Multiply the terms
More Steps

Multiply the terms
4×24×24
Multiply the terms
96×24
Multiply the numbers
2304
(−4)2−2304
Rewrite the expression
42−2304
Evaluate the power
16−2304
Subtract the numbers
−2288
x=484±−2288
Simplify the radical expression
More Steps

Evaluate
−2288
Evaluate the power
2288×−1
Evaluate the power
2288×i
Evaluate the power
More Steps

Evaluate
2288
Write the expression as a product where the root of one of the factors can be evaluated
16×143
Write the number in exponential form with the base of 4
42×143
The root of a product is equal to the product of the roots of each factor
42×143
Reduce the index of the radical and exponent with 2
4143
4143×i
x=484±4143×i
Separate the equation into 2 possible cases
x=484+4143×ix=484−4143×i
Simplify the expression
More Steps

Evaluate
x=484+4143×i
Divide the terms
More Steps

Evaluate
484+4143×i
Rewrite the expression
484(1+143×i)
Cancel out the common factor 4
121+143×i
Simplify
121+12143i
x=121+12143i
x=121+12143ix=484−4143×i
Simplify the expression
More Steps

Evaluate
x=484−4143×i
Divide the terms
More Steps

Evaluate
484−4143×i
Rewrite the expression
484(1−143×i)
Cancel out the common factor 4
121−143×i
Simplify
121−12143i
x=121−12143i
x=121+12143ix=121−12143i
Solution
x1=121−12143i,x2=121+12143i
Alternative Form
x1≈0.083˙−0.996522i,x2≈0.083˙+0.996522i
Show Solution
