Question
Solve the equation
x=−4223
Alternative Form
x=−0.54˙76190˙
Evaluate
3(2x−1)×7=−44
Multiply the terms
21(2x−1)=−44
Divide both sides
2121(2x−1)=21−44
Divide the numbers
2x−1=21−44
Use b−a=−ba=−ba to rewrite the fraction
2x−1=−2144
Move the constant to the right side
2x=−2144+1
Add the numbers
More Steps

Evaluate
−2144+1
Reduce fractions to a common denominator
−2144+2121
Write all numerators above the common denominator
21−44+21
Add the numbers
21−23
Use b−a=−ba=−ba to rewrite the fraction
−2123
2x=−2123
Multiply by the reciprocal
2x×21=−2123×21
Multiply
x=−2123×21
Solution
More Steps

Evaluate
−2123×21
To multiply the fractions,multiply the numerators and denominators separately
−21×223
Multiply the numbers
−4223
x=−4223
Alternative Form
x=−0.54˙76190˙
Show Solution

Rewrite the equation
42x=−23
Evaluate
3(2x−1)×7=−44
Evaluate
21(2x−1)=−44
Multiply
More Steps

Evaluate
21(2x−1)
Apply the distributive property
21×2x−21×1
Multiply the numbers
42x−21×1
Any expression multiplied by 1 remains the same
42x−21
42x−21=−44
Solution
42x=−23
Show Solution
