Question
Solve the inequality
x≤2453
Alternative Form
x∈(−∞,2453]
Evaluate
3(2x−4)×5≤2(3x×1)−7
Remove the parentheses
3(2x−4)×5≤2×3x×1−7
Multiply the terms
15(2x−4)≤2×3x×1−7
Multiply the terms
More Steps

Evaluate
2×3x×1
Rewrite the expression
2×3x
Multiply the terms
6x
15(2x−4)≤6x−7
Expand the expression
More Steps

Evaluate
15(2x−4)
Apply the distributive property
15×2x−15×4
Multiply the numbers
30x−15×4
Multiply the numbers
30x−60
30x−60≤6x−7
Move the expression to the left side
30x−60−6x≤−7
Move the expression to the right side
30x−6x≤−7+60
Add and subtract
More Steps

Evaluate
30x−6x
Collect like terms by calculating the sum or difference of their coefficients
(30−6)x
Subtract the numbers
24x
24x≤−7+60
Add and subtract
24x≤53
Divide both sides
2424x≤2453
Solution
x≤2453
Alternative Form
x∈(−∞,2453]
Show Solution
