Question
Solve the equation
x=1843
Alternative Form
x=2.38˙
Evaluate
3(2x−6)−11=4(x−3)×6
Multiply the terms
3(2x−6)−11=24(x−3)
Calculate
More Steps

Evaluate
3(2x−6)−11
Expand the expression
More Steps

Calculate
3(2x−6)
Apply the distributive property
3×2x−3×6
Multiply the numbers
6x−3×6
Multiply the numbers
6x−18
6x−18−11
Subtract the numbers
6x−29
6x−29=24(x−3)
Calculate
More Steps

Evaluate
24(x−3)
Apply the distributive property
24x−24×3
Multiply the numbers
24x−72
6x−29=24x−72
Move the expression to the left side
6x−29−(24x−72)=0
Calculate
More Steps

Add the terms
6x−29−(24x−72)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x−29−24x+72
Subtract the terms
More Steps

Evaluate
6x−24x
Collect like terms by calculating the sum or difference of their coefficients
(6−24)x
Subtract the numbers
−18x
−18x−29+72
Add the numbers
−18x+43
−18x+43=0
Move the constant to the right-hand side and change its sign
−18x=0−43
Removing 0 doesn't change the value,so remove it from the expression
−18x=−43
Change the signs on both sides of the equation
18x=43
Divide both sides
1818x=1843
Solution
x=1843
Alternative Form
x=2.38˙
Show Solution

Rewrite the equation
18x=43
Evaluate
3(2x−6)−11=4(x−3)×6
Evaluate
More Steps

Evaluate
3(2x−6)−11
Expand the expression
More Steps

Calculate
3(2x−6)
Apply the distributive property
3×2x−3×6
Multiply the numbers
6x−3×6
Multiply the numbers
6x−18
6x−18−11
Subtract the numbers
6x−29
6x−29=4(x−3)×6
Evaluate
6x−29=24(x−3)
Multiply
More Steps

Evaluate
24(x−3)
Apply the distributive property
24x−24×3
Multiply the numbers
24x−72
6x−29=24x−72
Move the variable to the left side
−18x−29=−72
Move the constant to the right side
−18x=−43
Solution
18x=43
Show Solution
