Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=492369−133701,x2=492369+133701
Alternative Form
x1≈0.006806,x2≈1.493194
Evaluate
3(3−2x)×82x=5
Multiply
More Steps

Evaluate
3(3−2x)×82x
Multiply the terms
246(3−2x)x
Multiply the terms
246x(3−2x)
246x(3−2x)=5
Expand the expression
More Steps

Evaluate
246x(3−2x)
Apply the distributive property
246x×3−246x×2x
Multiply the numbers
738x−246x×2x
Multiply the terms
More Steps

Evaluate
246x×2x
Multiply the numbers
492x×x
Multiply the terms
492x2
738x−492x2
738x−492x2=5
Move the expression to the left side
738x−492x2−5=0
Rewrite in standard form
−492x2+738x−5=0
Multiply both sides
492x2−738x+5=0
Substitute a=492,b=−738 and c=5 into the quadratic formula x=2a−b±b2−4ac
x=2×492738±(−738)2−4×492×5
Simplify the expression
x=984738±(−738)2−4×492×5
Simplify the expression
More Steps

Evaluate
(−738)2−4×492×5
Multiply the terms
More Steps

Multiply the terms
4×492×5
Multiply the terms
1968×5
Multiply the numbers
9840
(−738)2−9840
Calculate
7382−9840
x=984738±7382−9840
Simplify the radical expression
More Steps

Evaluate
7382−9840
Add the numbers
534804
Write the expression as a product where the root of one of the factors can be evaluated
4×133701
Write the number in exponential form with the base of 2
22×133701
The root of a product is equal to the product of the roots of each factor
22×133701
Reduce the index of the radical and exponent with 2
2133701
x=984738±2133701
Separate the equation into 2 possible cases
x=984738+2133701x=984738−2133701
Simplify the expression
More Steps

Evaluate
x=984738+2133701
Divide the terms
More Steps

Evaluate
984738+2133701
Rewrite the expression
9842(369+133701)
Cancel out the common factor 2
492369+133701
x=492369+133701
x=492369+133701x=984738−2133701
Simplify the expression
More Steps

Evaluate
x=984738−2133701
Divide the terms
More Steps

Evaluate
984738−2133701
Rewrite the expression
9842(369−133701)
Cancel out the common factor 2
492369−133701
x=492369−133701
x=492369+133701x=492369−133701
Solution
x1=492369−133701,x2=492369+133701
Alternative Form
x1≈0.006806,x2≈1.493194
Show Solution
