Question
Solve the equation(The real numbers system)
k∈/R
Alternative Form
No real solution
Evaluate
3(3k−10)×1=8×23k2
Multiply the terms
3(3k−10)=8×23k2
Multiply the numbers
More Steps

Evaluate
8×23
Reduce the numbers
4×3
Multiply the numbers
12
3(3k−10)=12k2
Swap the sides
12k2=3(3k−10)
Expand the expression
More Steps

Evaluate
3(3k−10)
Apply the distributive property
3×3k−3×10
Multiply the numbers
9k−3×10
Multiply the numbers
9k−30
12k2=9k−30
Move the expression to the left side
12k2−9k+30=0
Substitute a=12,b=−9 and c=30 into the quadratic formula k=2a−b±b2−4ac
k=2×129±(−9)2−4×12×30
Simplify the expression
k=249±(−9)2−4×12×30
Simplify the expression
More Steps

Evaluate
(−9)2−4×12×30
Multiply the terms
More Steps

Multiply the terms
4×12×30
Multiply the terms
48×30
Multiply the numbers
1440
(−9)2−1440
Rewrite the expression
92−1440
Evaluate the power
81−1440
Subtract the numbers
−1359
k=249±−1359
Solution
k∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
k1=83−8151i,k2=83+8151i
Alternative Form
k1≈0.375−1.536026i,k2≈0.375+1.536026i
Evaluate
3(3k−10)×1=8×23k2
Multiply the terms
3(3k−10)=8×23k2
Multiply the numbers
More Steps

Evaluate
8×23
Reduce the numbers
4×3
Multiply the numbers
12
3(3k−10)=12k2
Swap the sides
12k2=3(3k−10)
Expand the expression
More Steps

Evaluate
3(3k−10)
Apply the distributive property
3×3k−3×10
Multiply the numbers
9k−3×10
Multiply the numbers
9k−30
12k2=9k−30
Move the expression to the left side
12k2−9k+30=0
Substitute a=12,b=−9 and c=30 into the quadratic formula k=2a−b±b2−4ac
k=2×129±(−9)2−4×12×30
Simplify the expression
k=249±(−9)2−4×12×30
Simplify the expression
More Steps

Evaluate
(−9)2−4×12×30
Multiply the terms
More Steps

Multiply the terms
4×12×30
Multiply the terms
48×30
Multiply the numbers
1440
(−9)2−1440
Rewrite the expression
92−1440
Evaluate the power
81−1440
Subtract the numbers
−1359
k=249±−1359
Simplify the radical expression
More Steps

Evaluate
−1359
Evaluate the power
1359×−1
Evaluate the power
1359×i
Evaluate the power
More Steps

Evaluate
1359
Write the expression as a product where the root of one of the factors can be evaluated
9×151
Write the number in exponential form with the base of 3
32×151
The root of a product is equal to the product of the roots of each factor
32×151
Reduce the index of the radical and exponent with 2
3151
3151×i
k=249±3151×i
Separate the equation into 2 possible cases
k=249+3151×ik=249−3151×i
Simplify the expression
More Steps

Evaluate
k=249+3151×i
Divide the terms
More Steps

Evaluate
249+3151×i
Rewrite the expression
243(3+151×i)
Cancel out the common factor 3
83+151×i
Simplify
83+8151i
k=83+8151i
k=83+8151ik=249−3151×i
Simplify the expression
More Steps

Evaluate
k=249−3151×i
Divide the terms
More Steps

Evaluate
249−3151×i
Rewrite the expression
243(3−151×i)
Cancel out the common factor 3
83−151×i
Simplify
83−8151i
k=83−8151i
k=83+8151ik=83−8151i
Solution
k1=83−8151i,k2=83+8151i
Alternative Form
k1≈0.375−1.536026i,k2≈0.375+1.536026i
Show Solution
